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Abstract

We analyze and evaluate the different decision rules describing the Council of Min-
isters of the EU starting from 1958 up to date. All the existing studies use the Banzhaf
and the Shapley-Shubik indices. We argue that the nucleolus can also be considered
as an appropriate power measure. We develop an algorithm to calculate the nucleolus
and compare the results of our calculations with the conventional measures. In the
second part, we analyze the power of the European citizens as measured by the nu-
cleolus under the egalitarian model proposed by Felsenthal and Machover (1998), and
characterize the first best situation. Based on these results we propose a methodology
for the design of the optimal (fair) decision rules.



1 Introduction

Democratic decision-making, in local, national or supra-national bodies, is based on voting.
Political scientists and economists alike have long noted that it is far from obvious to evaluate
the voting power of different individuals or groups, e.g. parliamentary coalitions, in decision-
making bodies. They noticed that the voting power need not be proportional to the relative
number of votes an individual or a group is entitled to. For example, Luxembourg was
powerless in the Council of Ministers of the EU between 1958 and 1973. It held one vote,
whereas a qualified majority of votes was defined to be 12 out of 17. Since other member
states held an even number of votes, Luxembourg formally was never able to make any
difference in the voting process. The recent enlargement of the European Union caused a
lively debate on the adequate tools for measuring decision power in real-life institutions and
had strong implications for the balance of the power among member states.

During the last decade scholars have continued to contribute to the theoretical and em-
pirical research on power indices'. One of the important applied questions addressed in this
literature is whether the national representation in the European Union is fair or not. It
has often been claimed that the current allocation of votes among EU states is not fair.
In particular, it is often asserted that, in the European decision-making process, the large
countries are under-represented while the reverse holds for the small ones. In this paper
we address this question by performing the evaluation of the power distribution among the
member states in the EU Council of Ministers starting from 1958 up to date using the nucle-
olus. We conclude that in most of the cases, the above critique is justified, and therefore we
propose a new methodology for the design of the optimal (fair) decision rules. In particular,
we show that in the Council of Ministers in 1958, Germany got too little weight as compared
to France and Italy, and that, surprisingly, the choice to make Luxembourg a dummy was
optimal in our context. In what follows, we explain why the nucleolus is an appealing power
measure for this analysis.

As noted by Napel and Widgren (2004) "Scientists who study power in political and
economic institutions seem divided into two disjoint methodological camps. The first one uses
non cooperative game theory to analyze the impact of explicit decision making procedures
and given preferences over a well-defined, usually Euclidean policy space. The second one
stands in the tradition of cooperative game theory with more abstractly defined voting
bodies: the considered agents have no particular preferences and form winning coalitions
which implement unspecified policies. Individual chances of being part of and influencing a
winning coalition are then measured by a power index....Proponents of either approach have
recently intensified their debate which was sparked by the critique by Garrett and Tsebelis
(1999, 2001).... Several authors have concluded that it is time to develop a unified framework
for measuring decision power. On the one hand, such framework should allow for predictions
and ex post analysis of decisions based on knowledge of procedures and preferences. On the
other hand, it must be open to ex ante and even completely a priori analysis of power when
detailed information may either not be available or should be ignored for normative reasons".

!See for instance, Algaba et al. (2007), Barr and Passarelli (2009), Bilbao et al. (2002), Felsenthal and
Machover (2001, 2004), Laruelle and Widgren (1998) and Leech (2002).



Some authors including Steunenberg, Schmidtchen and Koboldt (1999), Maaser and
Napel (2007), Napel and Widgren (2004) have proposed models of public decision mak-
ing where, to some extent, the two points of view are reconciled. Steunenberg, Schmidtchen
and Koboldt (1999) propose a general framework where the policy space is a multidimen-
sional space and preferences are defined by the Euclidean distance to an ideal point. The
power of a player with respect to an arbitrary outcome function (i.e., a function mapping a
profile of ideal points into a policy) is defined as the expected payoff of this player and the
expected payoff of a random player. They apply their theory to the case where the policy
space is one-dimensional and where the game form is intended to model the EU decision-
making process. Maaser and Napel (2007) also consider a one-dimensional policy space and
model a two-tier representative system where each citizen in each constituency has a single
peaked symmetric preferences. They assume that the representative of each constituency is
the median voter of the constituency and that the decision taken at the top tier is the po-
sition of the pivotal representative. Using Monte-Carlo simulations, they investigate several
artificial constituency configurations as well as the EU and the US electoral college. Pre-
cisely, given a random device to select the ideal points, they look for the allocation of voting
weights for which each voter in each constituency have an equal chance to determine the
policy implemented by the top tier, and show that the Penrose square root principle comes
close to ensuring equal representation. Napel and Widgren (2004) consider the situation
where the status quo is matched against a proposal but the decision to challenge the status
quo as well as the nature of the proposal is not exogenous like in traditional models of power
measurement; instead the proposal is under the control of an agenda setter. They sketch
a theory of power measurement (the players are the voters and the agenda-setter) for this
specific setting and under the extra assumption of unidimensionality: where (ex ante) power
is defined as expected marginal influence?.

Napel and Widgren (2004) assert that "So far, we have only considered ideal points in
one-dimensional policy spaces. These are analytically convenient. Both the derivation of
ex post power and formation of expectations are more complicated for higher-dimensional
spaces. Howewver, there is no obstacle, in principle". In this paper, we aim to contribute to
the reconciliation between the two approaches. We certainly agree with the postulate that
game forms have to be taken into account by political analysis but we do not want the power
analysis to be extremely sensitive to the details of the game form used to describe the non-
cooperative decision process, i.e. we would like to derive some robust power measure. To do
so, we consider a specific, but extremely important, multidimensional policy space, namely
distributive politics. Precisely, we are interested in multidimensional policy issues which
can be represented as vectors in the simplex of some Euclidean space. This setting arises
naturally when the issue under scrutiny is the allocation of a fixed budget (surplus, cost,
gains from cooperation or coordination,...) across the members of an organization. More
generally, under the assumptions of transferable utility (i.e., quasi-linearity with respect to
some common numeraire) and efficiency in public decision making, the simplex structure

2Several authors including Napel and Widgren (2006, 2009), Passarelli and Barr (2007 and Tsebelis (1994)
have analysed non cooperative game forms describing the interaction between the decision bodies (among
which the council of ministers) involved in the EU decision making process.



appears as the efficient frontier of any bounded and convex subset of policies like those
considered in the spatial model of politics. The unit of measurement will be interpreted
below as being money but alternative units, like for instance ministry portfolios or (local)
public expenditures, can be considered. The key assumption that we make on preferences
is that members of the organization only care about their share. This means that the ideal
points are the vertices of the simplex and that there is no room here for a difference between
ex ante and ex post power measurement from the perspective of preferences.

Several alternative forms can be considered to describe the public decision making process.
Following Montero (2006) and Snyder et al. (2005)), we could consider for instance a legisla-
tive bargaining game a la Baron and Ferejohn where players act strategically as proposers
and (or) voters. It has been shown under some conditions on the vector of probabilities of
being selected as a proposer and on the structure of the simple game describing the dis-
tribution of voting power in the organization, that the nucleolus of the simple game is the
unique vector of expected equilibrium payoffs®. Another game form for which the nucleolus
also appears as the vector of equilibrium payoff is the celebrated sequential lobbying model
pioneered by Groseclose and Snyder (1996) and further explored by Banks (2000), Diermeier
and Myerson (1999), Le Breton and Zaporozhets (2010) and Le Breton, Sudholter and Za-
porozhets (2010) among others. In this model, two competing lobbies buy the votes of the
(some of the) members of a legislature in order to get these people to vote for their most
preferred alternative. Young (1978 a, b) had already developed a quite similar model in
a series of illuminating papers. Young (1978 a,b), Le Breton and Zaporozhets (2010) and
Le Breton, Sudholter and Zaporozhets (2010) have independently demonstrated that if at
equilibrium lobbying takes place, then the nucleolus is a vector of equilibrium payoffs and,
often, the unique vector of equilibrium payoffs. In both models, the ex ante approach is well
defined. In the bargaining model, it is attached to the vector of probabilities of being selected
to act as a proposer. In the lobbying model, as suggested in Diermeier and Myerson (1999),
randomness results from the fact that the willingness to pay of each lobby is the realization
of a random variable and that lobbying takes place iff the ratio of the two realizations is
larger than some threshold called the hurdle factor.

These arguments provide grounds for our choice of the nucleolus as a contender to the
traditional measures. In contrast to the Banzhaf and the Shapley-Shubik power indices which
are very well defined in the context of a binary ideological setting?, the above line of reasoning

31n this problem where an alternative is a division of a pie, the nucleolus predicts a larger share for those
who have a larger weight in the voting process. This raises a number of emprical questions, in particular,
whether reapportionment in a legislature affects policy outcomes? Since the United States Supreme court
established the principle of "one person-one vote" in the 1960s, a number of american legal scholars and
political scientists have examined this question (see e.g. Ansolabehere, Gerber and Snyder (2002)). Horiuchi
and Saito (2003) examine the same question from a comparative perspective by focusing on reapportion-
nement associated with the electoral reform implemented in Japan in 1994. It was like a natural experiment.
The reform has reduced the overall level of reapportionnement in a very short span of time and they were
therefore in position to examine the effects of reapportionnement on policy outcomes while holding other
social, economic, and demographic factors almost at a constant level. Both empirical studies conclude that
the influence is significant.

*We refer to the monographs of Felsenthal and Machover (2003) and Laruelle and Valenciano (2008) for
a description of the state of the art and for a rigorous and comprenhensive treatment of the binary setting.



shows that in the context of the distributive politics the nucleolus can be considered as an
appropriate power measure. This point of view has been advocated a long ago with force
and talent by Young® (1978 ¢) and more recently by Montero (2005). In addition to the non-
cooperative foundations which have just been mentioned, these papers argue convincingly
that the nucleolus is a very consistent power index. Our paper aim to contribute to the
diffusion of the idea that the nucleolus is indeed a power index that should be considered
in applied positive and normative analysis of organizations described as weighted majority
game.

In the first part of our paper, we evaluate different decision rules for the Council of
Ministers of the EU starting from 1958 up to date. We develop an algorithm to compute the
nucleolus and apply it to analyze the distribution of voting power in the Council of Ministers
of the European Union. We compare the results of our calculations with the predictions
provided by the Banzhaf and the Shapley-Shubik as well as another index obtained from the
non-cooperative bargaining game due to Baron and Ferejohn (see Montero (2007)). We are
interested both in the power of a country to approve as well as its power to block a decision.
The Banzhaf and the Shapley-Shubik indices give the same answer in both situations. The
two new measures may assign different values to the power to approve and to the power to
block a proposal by a country.

In the second part, we move to a normative analysis, i.e. to the determination of the
weights that should be assigned to the members of the EU council of ministers in order
to achieve a certain social objective®. Hereafter, we will refer to this weights as being the
optimal weights. In the classical binary setting, this approach has been pursued by many
authors. For instance, Machover and Felsenthal (1998) ask how the optimal weights look like
in the Banzhaf setting when the objective is to minimize the majority deficit or equivalently
to equalize the power of the citizens. They show that the optimal weights are proportional to
the square root of the respective constituency’s population sizes, the celebrated Penrose’s rule
(1946). In Barbera and Jackson (2006), the optimal weights result from a the maximization
of an utilitarian objective. They found that the optimal weights will depend upon the
details of the probability process selecting the profile of utilities. This utilitarian model
has been explored further by Beisbart, Bovens and Hartmann (2005) and Beisbart and
Hartmann (2010); these papers reinforce the recurrence of the Penrose recommendation as
an optimal solution. In this paper, we follow the egalitarian approach with the nucleolus
being the measure of power of the countries in the EU Council of Ministers: in our setting
the role of the Council of Ministers is to distribute some surplus across the countries. The
country amount is then divided equally among their citizens (we do not introduce any bias).
If this surplus is interpreted as the gains from the EU, we would like this surplus to be
shared equally among European citizens”. It follows from our result that this egalitarian

’In Young (1978 ¢) a new and different approach to power measurement is developped.

6The selection of national voting weights in the Council of Ministers of the European Union and its
implied influence on the EU legislation have received a great deal of attention from academics, politicians
and the general public and has generated a lot of controversies.

"The principle of "one person, one vote" is generally taken to be a corner stone of democracy. In this
distributive setting, the principle is as simple as "one person, one euro".



goal will be met perfectly if and only if the nucleolus for the representatives equals to the
population shares. It is not clear, however, how this principle ought to be operationalized
in practice either in terms of apportioning an integer number of seats for given non-integer
ideal shares or in determining what are the ideal shares. Although it seems straightforward
to allocate weights proportional to population sizes, this ignores the combinatorial properties
of weighted voting, which often imply spark discrepancies between voting weight and actual
voting power as illustrated in the beginning of the introduction. We are confronted to a truly
combinatorial second best optimization problem®. Second best, because we will never reach
the perfection and we need therefore to evaluate the social loss associated to any deviation
from perfect equality. Combinatorial, because we have only a finite number of possibilities.
In that respect the terminology "optimal weights" can be misleading as what really matters
is the simple game induced by the weights. If there were only three countries, the notion
of weights is almost meaningless. In addition to that, let us also point out that there is
no reason to infer that the second best optimal simple game will be a weighted majority
game’. The combinatorial problem is difficult!’. We introduce a methodology, based on the
specific criterion of variance minimization'!, for the design of the voting rule. Implementing
the method is far from being easy. We illustrate its application when the number of EU
members was very small.

The rest of the paper is organized as follows. In the subsequent subsection we provide a
review of the closely related literature. Section 2 describes the first five configurations of the
Council of Ministers between 1958 and 1995 which operated under the weighted voting rules.
We provide the values for the nucleolus and the expected payoffs from the corresponding
bargaining game both for the approval and the block situations. The expected payoffs, in
fact, are given only up to 1986 due to the computational complexity. We compare these values
with the more traditional power measures as the Banzhaf and the Shapley-Shubik indices.
In section 3, we describe the qualified voting rules for 15 and 27 members as prescribed
by the Treaty of Nice, and compare the nucleolus with the values for the Banzhaf and the
Shapley-Shubik indices. Section 5 is devoted to the design of the optimal (fair) decision
rules. An appendix is dedicated to an overview of the notions from cooperative game theory
which are used in this paper, as well as some results on the combinatorics of simple games
with a special attention to the issue of representation by weights.

8Barbera and Jackson (2006) refer to this as equivalent voting rules.

91n the utilitarian framework, as demonstrated by Barbera and Jackson, the optimal voting rule is almost
a weighted voting rule and is a voting rule under some specific assumptions.

10This explains why many practionners select a parametrized family of weight functions (for instance, the
population of the country to the power «) and calculate the values of the power indices resulting from each
feasible choice of the parameter(s). It is not entirely clear to us why this procedure guarantees that the
optimal second best simple game can be determined through such exploration.

'Variance minimization has been adopted by many authors. Of course, many other inequality indices like
for instance, the Gini index and the Kolm-Atkinson’s indices could be used instead. In this paper we have
not explored the sensivity of the conclusions to the choice of a particular index.



2 Two "New'" Power Indices

A measure of power is a map £ from the set of simple games (N, W) to the set of n-tuples of
real numbers. The value ¢, = &, (N, W) is the power of player 7 in the game (N,W), and it
satisfies 0 < ¢, < 1. The most famous power measures used in the literature are the Banzhaf
(BZ) and the Shapley-Shubik (S.5) indices'?. In this paper, we introduce two new measures
of power which are not derived from any set of axioms but instead as vector of equilibrium
payoffs of positive models of politics.

2.1 Lobbying and Power : The Nucleolus

In this section, we show that the nucleolus and more generally, the vectors belonging to the
least core of the simple game arise as the vectors of equilibrium payoffs of a game describing
the competition between two lobbies to buy the influence of the members of a legislature.
More precisely, in Young (1978 a, b), Le Breton and Zaporozhets (2010) and Le Breton,
Sudholter and Zaporozhets (2010), it is shown that the least core and the nucleolus are in
one to one correspondence with the set of vector of equilibrium payoffs of the legislators in
a celebrated game of lobbying due to Groseclose and Snyder (1996) and further analysed
by Banks (2000) and Diermeier and Myerson (1999). In this game theoretical model of
lobbying, the players of the simple game are the legislators or public decision makers in
charge of public policy. The legislators are assumed to be reactive to the influence of two
lobbies and the public policy can be biased towards one side or the other depending upon
the strength of each lobby and one key parameter characterizing the simple game and called
the hurdle factor of the simple game. Le Breton and Zaporozhets (2010) and Le Breton,
Sudholter and Zaporozhets (2010) show how to calculate the hurdle factor.

As emphasized by Young, the nucleolus NU (N, W) of the simple game (N,)V) can be
interpreted as the vector of relative prices of the legislators’ votes that a lobby has to pay to
impose its most preferred outcome in the presence of the opposition. It can be shown that

those prices are the solutions (up to a normalization) to the following linear program!?:

min Z t;
ieN
s.t. Zti >1forall SeW - (1)
ies
t;>0foralli e N
It is important to point out that the set of prices that we obtain when blocking coali-
tions are considered differ from the set of prices when winning considered as above. The
corresponding vector of prices are the solutions to the following linear program :

12For the definitions and the properties see for example, Felsenthal and Machover (1998) and Laruelle and
Valenciano (2008).

BBIn fact, the equilibrium offers ¢; coinside with the least core of the corresponding cooperative game. It
may contain multiple solutions, but the nucleolus is always one of them.
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Therefore, in contrast to the measures of power advocated by Banzhaf and Shapley-
Shubik which are invariant to the duality operation i.e. BZ (N,W) = BZ(N,B) and
SS (N, W) = SS(N,B). In contrast, NU (N,W) # NU (N, B) except in the case where
(N, W) is constant sum. The second vector arises as a vector of equilibrium payoffs when
the order of play of the two lobbies is inverted.

2.2 Bargaining and Power : The Nucleolus (Again)

In this section, we describe the power of the players as the payoffs they should expect to
derive at equilibrium if the division of the pie proceeds from a legislative bargaining game
constrained by some protocol. The game that we consider is the popular bargaining model
introduced by Baron and Ferejohn (1989). The voting rule represented by a simple voting
game (N, W).

Bargaining proceeds as follows. At every round ¢t = 1,2,..Nature selects a random
proposer: player i is selected with probability p;). This player proposes a distribution of the
budget (z1,...,x,) with z; > 0 for all j = 1,..n and Z?Zl xj = 1. The proposal is voted
upon immediately (closed rule). If the coalition of voters in favor of the proposal is winning,
the proposal is implemented and the game ends; otherwise the game proceeds to the next
period in which Nature selects a new proposer. Players are risk-neutral and discount future
payoffs. The players discount the future payoffs by a factor ¢; € [0,1]. A (pure) strategy for
player i is a sequence o; = (of)t > 1 where o}, the t-th round strategy of player i prescribes:

1. A proposal .

2. A response function assigning ”yes” or "no” to all possible proposals by the other
players.

The solution concept is stationary subgame perfect equilibrium (SSPE). Stationarity re-
quires that players follow the same strategy at every round t regardless of past offers and
responses to past offers. Banks and Duggan (2000) have shown that an SSPE!* always ex-
ists!'® in this type of bargaining model. In addition, Eraslan and McLennan (2006)'® have
shown that all SSPE lead to the same expected equilibrium payoffs.

14The main predictions of the model are the following. First, there is a property of immediate agreement.
Even without discounting there is a pressure to reach agreement in the first period because of the risk of
being excluded afterwards. Second, only minimal winning coalitions form in equilibrium, since otherwise it
would be a waste of resources for the agenda setter. Third, the proposer receives a disproportional share
of the pie, because he always buys the cheapest minimal coalition and pays the minimum amount to its
members just to secure the acceptance of the proposal.

15The existence result is provided by Banks and Duggan (2000) in a very general setting in which the space
of outcomes can be any convex compact set and the utility functions are concave but otherwise unrestricted.

16Tn the case of the standard majority game, the result was proved in Eraslan (2002).



In the case where p;, = % and 0; = 1 for all i = 1,...,n, we denote by BF (N,) the
unique vector of equilibrium payoffs attached to the SSPE of the bargaining game. Hereafter,
we will refer to this vector as the Baron-Ferejohn measure of power attached to the simple
game (N, W). To the best of our knowledge, Montero (2007) is the first to introduce and
study this measure of power .

Montero (2006) has analysed the above bargaining game in the case where (N, W) is a
constant-sum homogeneous weighted majority game. She shows that when p; = w; and §; < 1
for all ©+ = 1,...,n where w denotes the unique homogeneous normalized representation of
(N, W), then the vector of equilibrium payoffs coincides with the nucleolus. More generally,
for any proper simple game, she shows that if the vector p belongs to the least core of (N, W),
then there is a vector of equilibrium payoffs wich coincides with p. Finally, under some extra
qualification on the simple game, she demonstrates that if the vector p belongs to the least
core of (N, W), then p is the unique vector of equilibrium payoffs. In her terminology, the
nucleolus is a self-confirming measure of power.

3 Five Voting Bodies: Descriptive Analysis of Power

This section is purely descriptive. We analyze five weighted majority voting games associated
to the Council of Ministers of the European Union in 1958, 1973, 1981, 1986 and 1995 (Table 1
is adapted from Felsenthal and Machover, 2001), and compare the distribution of the decision
power according to the four different power measures.

We provide values for the Banzhaf and the Shapley-Shubik indices (calculated using the
webpage of D. Leech) as well as an index obtained from the non-cooperative bargaining
game due to Baron and Ferejohn (Montero, 2007) and the nucleolus. We are interested in
power distribution in both approval and block situations. Both Banzhaf and Shapley-Shubik
indices give the same answer, however, the other two measures may assign different capacity
to approve or to block a proposal by a country.

3.1 Power Distribution in 1958

The European Community is represented by a weighted majority game [12;4,4,4,2,2,1]. As
one can easily see Luxembourg is not in any winning or blocking coalition, and the game
can be equivalently represented as [6;2,2,2,1,1,0].

First, we look at the expected equilibrium payoffs in the bargaining game with the equal
probabilities of being a proposer. We compare the results from Montero (2007) and the
expected payoffs assuming that instead of the winning coalitions, we consider the blocking
coalitions i.e. the dual game. Denote by z, y and z respectively the expected payoffs for
players of type 2, 1 and 0. We impose z = y, then the equilibrium strategies might be
summarized as follows:

The equations for the players’ expected payoff then become:



Table 1: Weights and quota in the Council of Ministers.

Country 1958 1973 1981 1986 1995
Germany 4 10 10 10 10
Italy 4 10 10 10 10
France 4 10 10 10 10
UK — 10 10 10 10
Spain — — — 8 8
Belgium 2 5 5 ) )
Netherlands 2 5 5 5 5}
Greece — — 5 5 5!
Portugal — — — ) )
Sweden — — — — 4
Austria — — — — 4
Denmark — 3 3 3 3
Ireland — 3 3 3 3
Finland — — — 3
Luxembourg 1 2 2 2 2
Quota 12 41 45 54 62

Total votes 17 58 63 76 87
Quota (%) 7059 70.69 71.43 7T71.05 71.26

Player type

x Yy 2
Coalition type [2,2] 3(2) — 2(3)
1-2 1-2
: 7 (2) 1(1) —(6)

1 21 1/2 1—7/3 2\
- Z(1-— R 2z
x 6( x)+63x—|—6<3’y+ 5 >x+62x
1 31-1/2 11-+/3
- Z(1— hd 2
y -2+ eyt ey
1
r =y

The solution is: x =y = % ~ 0.179, z = % ~ 0.107.

Interestingly, the medium-size countries get disproportionately high power as compared
to the large ones, and the small country gets disproportionately high power as compared
to the medium-size countries. The reason is that the small the medium countries have

10



disproportionately high proposal power: the probability of being selected as a proposer is
the same for all the countries and equals 1/6. Another interesting observation is that even
though Luxembourg is a dummy, it gets positive expected payoff because it is allowed to
make proposals.

In order to calculate the nucleolus (NU) we solve the problem (1) which looks like:

min 3z + 2y
s.t. 20+ 2y > 1
3r>1
z,y >0

The solution of this problem is:

and the value of the program (the hurdle factor) is v = 1.333.
If we look at the game with respect to the blocking coalitions, the nucleolus is the solution
of the following program:

min 3z + 2y
st.x+y>1
20 > 1
z,y >0
The solution now is (%, %) and the value of the program (the dual hurdle factor) is v = 2.5.
The results are summarize in the following Table 2:

Table 2: Power distribution in 1958.

Country SS BZ BF BF (b) NU NU(b)
v=1333 =25
Germany 0.233 0.238 0.238 0.179 0.250 0.200
Italy 0.233 0.238 0.238 0.179 0.250 0.200
France 0.233 0.238 0.238 0.179 0.250 0.200
Netherlands 0.150 0.143 0.119 0.179 0.125 0.200
Belgium 0.150 0.143 0.119 0.179 0.125 0.200
Luxembourg 0 0 0.048 0.107 0 0

11



3.2 Power Distribution in 1973

The voting body is represented by the following weighted majority game: [41; 10,10, 10, 10,5, 5, 3, 3, 2].
There are 5 types of minimal blocking coalitions: [10,10], [10,5,5], [10, 5, 3], [10, 3, 3,2] and
5,5,3,3,2].
Again, we are looking for the expected equilibrium payoffs with respect to the blocking,
and as before we denote the expected payoffs by x for the countries with 10 votes, by y - for
the countries with 5 votes, by 2- for the countries with 3 votes and by w - for the countries
with 2 votes. We postulate an equilibrium with y = 2z and < 2y. The equilibrium strategies
might be summarized as follows:

Player type

T Yy z w

Coalition type [10, 10] :(3) — — —
(10,5, 5] — A(4) — —
10,5, 3] — =R2(8) 8 -
[10,3,3,2] — — - }1(4)

In the table we indicate the probability of proposing a particular coalition by a particular
player, and in the parentheses we put the number of coalitions of a particular type that
include a particular player.

The equations for the expected payoffs are given by:

r = %(1—:5)4—%()\—1-21_84)\)95 ggx %ix géx
y = %(1—w—y)+§%y+%4ky
z = %(1—$—y)+§w;ﬁi—lz
w = %(1 —x —2z)
y = =z
The unique expected equilibrium payoffs are:
x:%zo.mg, y:z:%zo.mz,w:%mo.om.

Surprisingly, expected payoffs for countries with 5 and 3 votes are the same and do not
differ much from the expected payoffs for the countries with 10 votes.
To calculate the nucleolus we solve the linear program:

12



mindx + 2y + 2z +w

st. dv4+y>1
dr+22>1
dr+w>1
3r+2y+2>1 "
3r4+2y+w>1
3r+y+2z>1
x,y,z,w >0

The solution is (1/3,0,0,0) and the value of the program is 4/3. As compared to 1958
the hurdle factor does not change, as well as the power of the big countries. However, other
countries, even though they are not dummies, get zero.

Looking at the minimal blocking coalitions we need to solve:

mindx + 2y + 2z +w
st. z4+y+z>1
r+2y>1
2c > 1
2+ 2z2+w>1
r+2z+w>1
x, Yy, 2, w >0

We deduce that the nucleolus in this case is (%, %, %, 0) and the dual hurdle factor is
v = 3. It is interesting to notice, that even though Luxembourg is not a dummy anymore
it gets 0. Further, the hurdle factor is increasing as compared to the previous case, which
means that the Council became less vulnerable to lobbying.

The results are summarized in the Table 3.

Table 3: Power distribution in 1973.

Country SS BZ BF BF (b) NU NU (b)
v=1333 =30

Germany 0.179 0.167 0.159 0.129 0.250 0.167
Italy 0.179 0.167 0.159 0.129 0.250 0.167
France 0.179 0.167 0.159 0.129 0.250 0.167
UK 0.179 0.167 0.159 0.129 0.250 0.167
Belgium 0.081 0.091 0.079 0.102 0 0.083
Netherlands 0.081 0.091 0.079 0.102 0 0.083
Denmark 0.057 0.066 0.071 0.102 0 0.083
Ireland 0.057 0.066 0.071 0.102 0 0.083
Luxembourg 0.001 0.016 0.063 0.074 0 0
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3.3 Power Distribution in 1981

As it is shown in Montero (2007) the representation [45; 10, 10, 10, 10, 5,5, 5, 3, 3, 2] is equiv-
alent to [18;4,4,4,4,2,2,2.1,1,1].
The nucleolus is the solution of the linear program:

min 4z + 3y + 32

st. dr+y>1
dr+22>1
dr+3y >1
3r+2y+22>1
z,y,2 >0

The minimum is reached at (1/3,0,0), and the value of this minimum is 4/3. In fact,
nothing is changed as compared to 1973.

The following linear program:

min 4z + 3y + 32

st. 2z >1
r+2y>1
r+y+22>1
y+2z>1
x,y,z >0

gives the solution if we are interested in the game with respect to blocking situation. The
nucleolus in this case is (0.16,0.08,0.04) and the dual hurdle factor is v = 3.125.

When calculating the expected payoffs in the case the blocking coalitions are proposed,
we checked that the assumption made in Montero, 2007:

r=2yand y =2z
is not supported in any equilibrium anymore. We impose an equilibrium with
r <2y andy < 2z.

Then, the equilibrium strategies can be summarized in the following table:

Player type
Y z

(8) -

] - . -

Coalition type

—
|
e d
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The system for the equilibrium expected payoffs is:

r = i(l—x)—i—ingLiEx—l—ilx
10 108 1024 103
B 1(1 . 38 24

Y= 100 """ Y 1024Y T 1087
B 1(1 )+212

ST A VT DY R

The solution is:

x=0.118, y = 0.098 and z = 0.078

Interestingly, © < 2y and y < 2z, i.e. the price per vote of a smaller player is higher than
for a bigger one.
The results are summarized in the Table 4.

Table 4: Power distribution in 1981.

Country SS BZ BF BF (b) NU NU (b)
v=1333 v=3.125
Germany 0.174 0.158 0.160 0.118 0.250 0.160
Italy 0.174 0.158 0.160 0.118 0.250 0.160
France 0.174 0.158 0.160 0.118 0.250 0.160
UK 0.174 0.158 0.160 0.118 0.250 0.160
Belgium 0.071 0.082 0.080 0.098 0 0.080
Netherlands 0.071 0.082 0.080 0.098 0 0.080
Greece 0.071 0.082 0.080 0.098 0 0.080
Denmark 0.030 0.041 0.040 0.078 0 0.040
Ireland 0.030 0.041 0.040 0.078 0 0.040
Luxembourg 0.030 0.041 0.040 0.078 0 0.040

3.4 Power Distribution in 1986

The game is described as [54; 10, 10, 10, 10, 8,5, 5,5, 5, 3, 3, 2]. With respect to the blocking
the game can be written as: [23;10, 10, 10, 10,8, 5,5, 5,5, 3, 3, 2]. By w we denote the number
of minimum winning coalitions.
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Table 5: Power distribution in 1986.

Country SS BZ NU NU (b)
vy=138 ~v=32
w=135 w =182

Germany 0.134 0.129 0.138 0.125

Italy 0.134 0.129 0.138 0.125
France 0.134 0.129 0.138 0.125
UK 0.134 0.129 0.138 0.125
Spain 0.111 0.109 0.103 0.125
Belgium 0.064 0.067 0.069 0.063
Netherlands 0.064 0.067 0.069 0.063
Greece 0.064 0.067 0.069 0.063
Portugal 0.064 0.067 0.069 0.063
Denmark 0.043 0.046 0.034 0.063
Ireland 0.043 0.046 0.034 0.063
Luxembourg 0.012 0.018 0 0

3.5 Power Distribution in 1995

The game is described as [62;10,10,10,10,8,5,5,5,5,4,4,3,3,3,2] with total weight 87.
With respect to the blocking the game becomes: [26; 10,10, 10, 10,8,5,5,5,5,4,4,3,3,3,2].

4 Qualified Majority Voting

4.1 QMYV in non-enlarged CM
Wiy = [169; 29,29, 29,29,27,13,12,12,12,10,10,7,7,7,4]

Py = [2327; 820, 592, 590, 576, 394, 158, 105, 102, 100, 89, 81, 53, 52, 37,4] (total weight is
3753) is the weighted rule whose weights are population sizes of 15 countries and quota is
62%. The following Table 7 presents the results.

4.2 QMYV in a 27-member CM

Following Felsenthal and Machover (2001) and Bilbao et al. (2002) we consider different
variants.

The first variant is a double majority system v, N vy, or v; Nwvs. The rule v is either the
weighted rule with weighted votes described by
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Table 6: Power distribution in 1995.

Country SS BZ NU NU (b)
y=14 ~v=3.33
w=2829 w=1270

Germany 0.117 0.112 0.115 0.1

Italy 0.117 0.112 0.115 0.1
France 0.117 0.112 0.115 0.1
UK 0.117 0.112 0.115 0.1
Spain 0.095 0.092 0.092 0.1
Belgium 0.056 0.059 0.057 0.05
Netherlands 0.056 0.059 0.057 0.05
Greece 0.056 0.059 0.057 0.05
Portugal 0.056 0.059 0.057 0.05
Sweden 0.045 0.048 0.046 0.05
Austria 0.045 0.048 0.046 0.05
Denmark 0.035 0.036 0.034 0.05
Ireland 0.035 0.036 0.034 0.05
Finland 0.035 0.036 0.034 0.05

Luxembourg 0.021 0.023 0.023 0.05

Wayr = [255;29,29,29,29,27,27,14,13,12,12,12,12,12,10,10,10,7,7,7,7,7,4,4,4,4,4, 3]'".

The rule vy is rule Pa7, the weighted rule whose weights are population sizes of 27 members
and whose quota is equal to 62%:

Par = [620; 170, 123,122,120, 82,80, 47, 33,22, 21,21,21,21,18,17,17,11,11,11,8,8,5,4,3,2, 1, 1].

Finally, vz is either M7, the ordinary majority rule, with weight 1 for each country and
quota 14, or /\/ll27, the ordinary majority rule, with weight 1 for each country and quota 18 :

Moy = [14;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1];

My, =[18;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

The second variant is a triple majority system vy N vy N v3, Where vy, v9 and vz are as
before.

In the following table we report the number of minimum winning coalitions for each
analyzed rule:

One can notice that there is not a big difference in terms of the number of the minimum
winning coalitions between Wa7, Why N Par, War N Moy and Way N Moy N Py or between
W27 N Ml27 and W27 N M,27 N P27.

Interestingly, the hurdle factor v is not affected by the additional requirements and it

17Sometimes in the literature quota 258 is used because of the discrepancies in the Nice Treaty. It appears
that the correct number is 255. However, we perform calculations also for quota 258, and we did not find
significant differences.
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Table 7: Power distribution for the 15 EU countries under the nucleolus.

COlll’ltI‘y W15 W15 N P15
NU NU(b) NU NU(b)
vy=14 ~v=3414 =14 ~=3483
w=T775 w=1018 w=760 w = 1490

Germany 0.122 0.121 0.122 0.139
Italy 0.122 0.121 0.122 0.119
France 0.122 0.121 0.122 0.119
UK 0.122 0.121 0.122 0.119
Spain 0.112 0.111 0.112 0.109
Belgium 0.051 0.061 0.051 0.059
Netherlands 0.051 0.051 0.051 0.050
Greece 0.051 0.051 0.051 0.050
Portugal 0.051 0.051 0.051 0.050
Sweden 0.041 0.040 0.041 0.050
Austria 0.041 0.040 0.041 0.040
Denmark 0.031 0.030 0.031 0.030
Ireland 0.031 0.030 0.031 0.030
Finland 0.031 0.030 0.031 0.030
Luxembourg 0.020 0.020 0.020 0.020

remains the same (y = 1.337) for all combinations. The nucleolus also assigns the same
values under all these rules. The results are given in the subsequent Table 9.
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Table 8: Power distribution for the 27 EU countries according to the nucleolus
under different rules.

rule w

War 476063
War N Por 476060
War N Moy 476063
War N My, 684204

War N Moz N Poy - 476060
War N My, N Par - 684201

Table 9: Power distribution for the 27 EU countries according to the nucleolus
under different rules.

Country NU

Germany 0.084
UK 0.084
France 0.084
Italy 0.084
Spain 0.078
Poland 0.078
Romania 0.041
Netherlands 0.038
Greece 0.035
Czech Republic 0.035
Belgium 0.035
Hungary 0.035
Portugal 0.035
Sweden 0.029
Bulgaria 0.029
Austria 0.029
Slovak Republic 0.020
Denmark 0.020
Finland 0.020
Ireland 0.020
Lithuania 0.020
Latvia 0.012
Slovenia 0.012
Estonia 0.012
Cyprus 0.012
Luxembourg 0.012
Malta 0.009
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5 The Power of the European Citizens and the Optimal
Decision Rule

In the previous sections we calculated the power of each nation (representative) in the Council
of Ministers of the European Union measured for four measures of power. In this section, we
will focus on the nucleolus and we will adopt a normative perspective. As already explained,
focusing on the nucleolus simply means that we are interested by European policy issues
which can be described formally as distributive politics. Something has to be shared among
the members of the council of ministers and ultimately among the European citizens and
the nucleolus is the reduced form of equilibrium for several alternative game forms spanning
bargaining and lobbying. To fix ideas, let us for the time being interpret this pie as the gains
(measured in appropriate units) resulting from European coordination. Fairness suggests
to allocate these gains equally across European citizens. This means that each country
should receive a share proportional to its population size. If there were no intermediate
political bodies i.e. if the simple game to be considered was the majority game with the set
of European citizens as the set of players, then all the coordinates of the nucleolus would
be equal and proportionality would be fulfilled. Unfortunately, we are in a second best
environment : the negotiation takes place across the countries. Only, in a second stage,
the share obtained by each country is divided among the citizens of the country. We are
left with a non trivial mechanism design exercise because we need to evaluate the citizens’
indirect power via their representatives in a two-stage decision-making process: at the first
stage citizens elect their representative (exercise their direct power), and at the second stage
the representative make an actual decision (citizens exercise only indirect power).

In what follows, we use a similar approach as in Felsenthal and Machover (1998) to mea-
sure citizens’ indirect Banzhaf power in a two-tier system. Their main result is that citizens’
indirect Banzhaf powers are equal if and only if the Banzhaf powers of the delegates in the
council are proportional to the respective square root of the population size!®. Algabada
et al. (2007) apply this theory to analyze the power of the European citizens for 25 and
27 countries. In the proposition below we prove a similar theoretical result for the relative
voting power measured by the nucleolus and then apply it to the Council of Ministers of the
European Union.

To describe the two-stage political process we use the following notations. Let the simple
voting game Ty = (M, W) describes the decision-making process at the council, where
M = {1,...,m} is the set of countries and W? is set of all winning coalitions. Also, by u
we denote the characteristic function. Similarly, the game T'; = (N;, W?), i = 1...m refers to
the decision-making process for each country i. Naturally, we assume that the sets N; are
disjoint. Then, the compound game I' = T'g [I'y, ..., T',,] is defined over set N = Ny U...UN,,
and its characteristic function v is defined by

v(S)=u({ie M:SNN;, e W}),SCN.

We also denote by n; and n the size of N; and N respectively. We adopt an assumption

18Gee their theorem 3.43.
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from Felsenthal and Machover (1998) that each component I'; is a quota majority game with
the same quota!® ¢ > 1/2 for all i = 1...m. By assumption, the numbers n; are very large.

Proposition 1 The nucleolus v of the simple game I" can be expressed through the nucleolus
Y of the game Ty as follows

0 0 0 0
_ Vi Vi Vi Vm 9
= |2 e 2)
ni ny N N
A N g
vV vV
ni times Nm times

Proof. In order to find the nucleolus for the game I' (up to a normalization) we need to
solve the following linear minimization problem:

minz Z tij
ieM jeN;

st Y Y tiy>1for e W,SeW . (3)
ieS jeT;
tijZOfOY’iGM,jENi

The numbers ¢;; reflect the amounts each citizen j in country ¢ gets. Without loss of
generality we can take t;; = t;, i.e. the citizens’ of country i get the same amount. Then,
the problem (3) can be rewritten as follows:

€M
s.t. anﬂfi >1for S e W .
€S
tz‘ Z 0 for ¢ e M

Applying the substitution for t; = ¢n;t; the minimization problem equivalently can be

rewritten as:
min Z t
ieM
s.t. Zt; >1for Se WY . (4)
i€S
ti>0forie M
One can notice that the final problem (4) is the problem for the representatives. There-
fore, we proved that ¢; = ﬁt; and taking into account normalization we establish the claim.
[ |
From the proof of the proposition it also follows that the hurdle factor v of the compound
game is equal to the hurdle factor 4° of the game for the representatives multiplied by %.
The determination of the nucleolus of a compound simple game is not straightforward. Our

Tn fact, Felsenthal and Machover (1998) assume that the components are simple majority games, i.e.
qg=1/2.
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proposition is a specific case of a more general result by Megiddo (1971, 1974). He shows
that the nucleolus v of a compound game I' can be expressed as follows:

v=ov"™ + ...+ o™,
where ** is a baricentrical projection of v on N, i.e.

i vi, jE€N;

and a; is a solution to an optimization problem?’. In our case av = 1/°.

Corollary 2 Citizens’ indirect powers measured by the nucleolus v; are equal for all i € N
iff the powers of the delegates 1/? are equal to the respective population rates 7;—]

The optimization variable is here the simple game (M, W?). There is a finite number of
possible choices. This number can be large in particular if we do not impose any restrictions
on the nature of the simple game itself. In appendix 3, we have reported some results from
the literature on the enumeration of all simple games or important families of simple games.
On top of these families, appear the family of (strong) weighted majority games. If we limit
the optimization to that subclass, then we may think of using Peleg’s result asserting that the
normalized homogeneous representation of a homogeneous strong weighted majority game
(N, W) coincides with the nucleolus of (N,v). If the game generated by the weights w; = n;
and the quota ZE+W is homogeneous, then the solution of our problem is trivial as we
can get the first best. Unfortunately, things are much less simple. In what follows, we will
formulate the combinatorial optimization problem that we consider and derive the optimal
simple game (M, W?°). Before doing so, it is useful to evaluate how the implications of the
choices of (M, W") on the nucleolus for the five stages of European enlargement which are
considered in this paper In the following two tables 10 and 11 we show the population ratios
taken from Felsenthal and Machover (1998, 2004) and the nucleolus taken from the tables in
the previous section. An asterisk indicates an occurrence of the paradox of new members: a
member state’s relative power has increased although its relative weight has decreased as a
result of the accession of the new members. One can notice that it happens for example, in
1995 when Luxembourg gains in relative power from 0 to 0.023.

20See his Theorem 5.6.
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Table 10: Population and the nucleolus in the Council of Ministers 1958-1995.

Country 1958 1973 1981 1986 1995
% NU %’ NU % NU % NU n—nj NU

France 0.266 0.250 0.203 0.250 0.200 0.250 0.172 0.138 0.156 0.115
Germany 0.322 0.250 0.242 0.250 0.228 0.250 0.189 0.138 0.220 0.115
Italy 0.291 0.250 0.214 0.250 0.209 0.250 0.176 0.138 0.154 0.115
Belgium 0.053 0.125 0.038 O 0.036 O 0.031 0.069* 0.027 0.057
Netherlands 0.066 0.125 0.052 O 0.053 0 0.045 0.069* 0.042 0.057
Luxembourg 0.002 0 0.001 o0 0.001 o 0.001 o0 0.001 0.023*
UK — — 0.218 0.250 0.205 0.250 0.176 0.138 0.157 0.115
Denmark — — 0.019 0 0.019 o0 0.016 0.034* 0.014 0.034
Ireland — — 0.012 0 0.013 0 0.011 0.034* 0.010 0.034
Greece — — — — 0.036 0 0.031 0.069* 0.028 0.057
Spain — — — — — — 0.120 0.103 0.105 0.092
Portugal — — — — — — 0.031 0.069 0.027 0.057
Austria — — — — — — — — 0.022 0.046
Sweden — — — — — — — — 0.024 0.046
Finland — - - — — — — — 0.014 0.034
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Table 11: Population and the nucleolus in the Council of Ministers under QM
rules with 15 and 27 members.

Country QM 15 QM 27
mONU % NU
Germany 0.219 0.122 0.170 0.084
France 0.157 0.122 0.123 0.084
UK 0.158 0.122 0.123 0.084
Italy 0.154 0.122 0.120 0.084
Spain 0.105 0.112 0.082 0.078
Poland — — 0.080 0.078
Romania — - 0.047 0.041
Netherlands 0.042 0.051 0.033 0.038
Greece 0.028 0.051 0.022 0.035
Portugal 0.027 0.051 0.021 0.035
Belgium 0.027 0.051 0.021 0.035
Czech Republic — — 0.021 0.035
Hungary — — 0.021 0.035
Sweden 0.024 0.041 0.018 0.029
Austria 0.022 0.041 0.017 0.029
Bulgaria — — 0.017 0.029
Denmark 0.014 0.031 0.011 0.02
Slovak Republic — — 0.011 0.02
Finland 0.014 0.031 0.011 0.02
Ireland 0.010 0.031 0.008 0.02
Lithuania — — 0.008 0.02
Latvia — — 0.005 0.012
Slovenia — — 0.004 0.012
Estonia — — 0.003 0.012
Cyprus . = 0.002 0.012
Luxembourg 0.001 0.020 0.001 0.012
Malta — — 0.001 0.009

Obviously, the results suggest that the European citizens are not treated equally under
the decision rules operating in the CM since 1958 till now. The reason is that the nucleolus
does not coincide with the population ratios, i.e. the corollary 2 is not satisfied. In what
follows we investigate the question whether it were possible to do better and describe the
methodology to choose the optimal decision rule.
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6 The Optimal (Fair) Decision Rules

Corollary 2 suggests that if we would like to equalize the citizens’ power under the nucleolus,
we need to choose such a voting rule which will lead to the nucleolus V? for the represen-
tatives being equal to the countries’ population sizes. However, except in some exceptional
circumstances, it is not always possible to find a game, for which the vector of countries’
population sizes coincides with the nucleolus. Our tables provide information on the distance
between the first best and the outcome of the choices which were made. These choices may
be third best choices and we would like now to report on what could or should have the
second best from the perspective of our nucleolus measure of benefit.

Hereafter, we will assume that the objective of the political architect is to design the
simple game (M, ") in such a way that the distance between the induced nucleolus cal-
culated at the citizen level and the first best is the smallest possible. The distance which
is is considered here is the quadratic distance where the units are the citizens instead of
the countries. The objective of minimizing the variance is peculiar; the minimization of
any other inequality index like the Gini index or a Kolm-Atkinson index as reflecting the
desire to meet an egalitarian norm would be very appropriate too. Maaser and Napel (2006)
refer to this variance evaluation at the individual level as being the cumulative individual
quadratic deviation. Beisbart and Bovens (2007) also use the quadratic criterion way to
measure departure from perfect equality. While different, our approach follows the direction
paved by Barbera and Jackson (2006) who consider instead an wutilitarian criterion. This
welfarist approach has been followed by several authors among which Biesbart, Bovens and
Hartmann (2005) and Biesbart and Bovens (2007).

Denoting by S,, the set of all simple games with m players, our combinatorial problem
is defined as follows:

: 0
(M%OZ)ZsmVaT (NU (M, V%)),

where

Var (NU (M) = F —~ ”—?r, (5)

“ n n;
ieM

where NU (M, W?)) = (19,19, ...,/%)). The term Z—O indicates how much power (accord-

ing to the nucleolus) a citizen in country i gets given a specific voting rule. One can notice
that (5) can be simplified as

0)\2
: 1
N M 0 — (Vz) i
Var (NU (M, W°))) EZM—“ - (6)
The resolution of our problem would be greatly simplified if we knew the image I'm (NU,,)
of the mapping NU,, attaching to any simple game (M, W°) € S,, the nucleolus of the
game. Im (NU,,) is a finite subset of the (m — 1) — dimensional simplex. If Im (NU,,) was
characterized, our problem would be:
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by
ienr : (7)
st. z € Im(NU,,)

This formulation indicates quite clearly why the second best problem differs from its
first analogue where the constraint * € Im (NU,,) is replaced by the relaxed constraint

T € {y € RY: Z Y = 1}. The first order conditions write:
i=1

2,0
Vi = \forie M,
n;

where ) is a Lagrange multiplier. From these conditions, we deduce that

VY = Y forie M ,
n

which is as expected the egalitarian first best. Unfortunately, the set(s) has(ve) not
been characterized in full generality. This problem, known as an inverse problem as the
problem is to characterize which vectors can be obtained as a power vector for an adequate
choice of a simple game, has been formulated recently by Alon and Edelman (2010) for the
Banzhaf measure and they obtained partial results. We are not aware of any general result
on the inverse problem for the nucleolus. This means that we will examine the combinatorial
problem in its original formulation. Precisely, we consider as subset of feasible simple games
any subset G,, of the set §,, of all simple games with a special focus on the set of constant
sum simple games. However, any other subset of S, like for instance, the set of weighted
majority simple games or homogeneous weighted majority games or weighted majority games
where the weights are constrained by some symmetry conditions could be considered as well.
The procedure for solving (7) can be presented as the sequence of the following steps:

Step 1. For the given number of countries m, list all possible games the class G,,;

Step 2. Calculate the nucleolus ° for each game from the list;

Step 3. Find the variance from (6);

Step 4. Choose the game with the minimal variance.

We illustrate the use of our technique for m = 3 and 4. Without loss of generality, we
assume that ny > ny > ... > n,,.

For 3 countries there are only two possible strong games: the simple majority game which
is represented as [2; 1,1, 1] and the dictatorial game which is represented as [1;1,0,0]. Then
given (6) the variance for the majority game is:

11 1 1 1
Varpeg = = | —+—+ —| — —,
91ny ng ns n

and the variance for the dictatorial game is:

1 1
Varge = — - .
nq n
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Figure 1: The optimal rule in a class of strong games for m = 3.

On the following graphs (figure 1) we show the values of the population shares v, and ~,
for the two biggest countries (where ; = ™ ) for which each of the two games is optimal.

If we drop the restriction of strong, we have an additional game, where there are two
vetoers?! with the representation [2;1,1,0]. The variance for such a rule is:

1[1 1} 1
4 |ny  ng n

On the following figures 2 we again show the values of the two biggest countries’ popu-
lation shares, v, and +,, for which each of the three games is optimal.

Not surprising the majority rule is optimal when the three countries are not too different
in terms of the population ratios, and the dictatorial rule is optimal in the case where there
is a relatively big country.

For 4 countries there are only 3 possible games in the class of strong games: [1;1,0,0, 0]
(dictatorial rule), [2;1,1,1,0] (majority rule for three players) and [3;2,1, 1, 1] (apex game).
As before the variance for the majority game is:

1{1 1 1} 1
91ni ng N3 n

V&Tveto =

Varm. =

and the variance for the dictatorial game is:

1 1
Varge = ———.
nq n

114 n 1 n 1 1
25 ny  ne  ns n

2Tn fact, we could include the unanimmity game, but it gives the same variance as the simple majority
game.

The variance for the apex game is:

Vargpes =
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Figure 2: The optimal rule for m = 3.

Similarly to the previous case, the majority rule is optimal when the three countries are
relatively close in the population size and the fourth country is very small.

From the results reported in appendix 2, it is clear that we can solve our optimality
problem by "brutal force" as long as m < 8 for some specific important classes of simple
games, like for instance, strong weighted majority games. For such games, we will limit
(of course) to those where the weights are congruent to the population sizes. For m < 8,
any weighted majority game admits a unique minimal integral representation which coincides
with the least core and therefore the nucleolus. The relationship between representations and
nucleolus starts to become intricate when m > 9. The nucleolus is always a representation
but it does not always induce a minimal integral representation even in simple games with
a unique such minimal integral representation.

We take advantage of this methodological detour to discuss briefly the issue of represen-
tation of weighted majority games which is discussed with more details in appendices 2 and
3. We know that the notion of weight is meaningless in the measurement of power as what
matters exclusively is the structure of minimal winning coalitions resulting from the weights.
However, in the literature on the design of optimal voting organizations, authors often refer
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to optimal weights which could be misleading as we could infer that the numerical values
of the weights make sense. They raise questions, like for instance: should these weights
vary like the population size or the square root of the population size or any other power of
the population size? We think that if the design question has to be formulated in terms of
representation, then it could be formulated as follows : among all potential minimal integral
representations of strong weighted majority simple games, which one should be selected given
the considered objective? At the extreme, suppose that the organization has only 3 members
whose populations sizes satisfy n; > ns > nz. Then the question of allocating voting weights
to the countries according the to the values of n; versus the values of ,/n; has no interest.
A formulation using canonical minimal integral representations is instead very meaningful
and it offers some extra advantages, like for instance, the knowledge of the seats’ number
(or total weight) necessary to proceed. Of course, when m is large the combinatorial issue
becomes out of reach and it may be useful to see if then working with the n; as opposed to
the y/n; lead to very contrasted simple games. It is then an empirical matter to determine
what we mean by large m to move from the combinatorics to the calculation through simple
functions of weights.

6.1 The EU Council of Ministers 1958 Revisited

In this final part we apply our technique to find the optimal decision rule for the EU Council
of Ministers in 1958 given the number of member states and their population sizes (see Table
10). In the following Table 12 we list all strong weighted majority games as provided by
Isbell (1959) with the corresponding values for the nucleolus and for nVar.
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Table 12: Strong Weighted Voting Games with 6 Players.

NU nVar
,0,0,0,0, 1,0,0,0,0,0) 2.106
,1,1,0,0, 1/3,1/3,1/3,0,0,0) 0.145
,1,1,1,0, 2/5,1/5,1/5,1/5,0,0) 0.391
,1,1,1,1, 1/5,1/5,1/5,1/5,1/5,0) 0.773
,1,1,1,1, 3/7,1/7,1)7,1/7,1/7,0) 0.412
,2,1,1,1, 2/7,2/7,1/7,1/7,1/7,0) 0.305
,2,2,1,1, 1/3,2/9,2/9,1/9,1/9,0) 0.120
,1,1,1,1, 2/7,1/7,1/7,1/7,1/7,1/7) 10.299
,1,1,1,1, 4/9,1/9,1/9,1/9,1/9,1/9) 6.295
,2,1,1,1, 1/3,2/9,1/9,1/9,1/9,1/9) 6.154

4/13,3/13,3/13,1/13,1/13,1/13) 2.837
/13,2/13,2/13,2/13,1/13,1/13)  3.059
1/3,1/5,1/5,2/15,1/15,1/15) 2.208
2/9,2/9,2/9,1/9,1/9,1/9) 6.102
3/11,2/11,2/11,2/11,1/11,1/11) 4.258
4/13,3/13,2/13,2/13,1/13,1/13) 2.995
/13,3/13,2/13,2/13,2/13,1/13)  3.201
4/15,1/5,1/5,2/15,2/15,1/15)  2.336
5/17,4/17,3/17,2/17,2/17,1/17)  1.777
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As one can see from the Table 12, in the class of strong weighted majority games the
game [3,2,2,1,1,0] provides the minimal variance with value for nVar = 0.12. The real
decision rule for 1958 is not in the list, because it is not a strong game. However, nV ar for
this game equals to 0.175, and therefore this rule cannot be optimal even if we accept simple
games which are not strong.

Two conclusions can be drawn from this exercise are the following. First, Germany got
too little weight as compared to France and Italy. Second, the choice to make Luxembourg
a dummy was optimal in our context.

7 Conclusion
In this paper, we have developed a methodology to evaluate and design voting organizations

in order to minimize the distance to an egalitarian sharing of a surplus when the process of
division across the countries which are members of the organization is described at equilib-
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rium by the nucleolus of the simple game. We have explained why the vector corresponding
to the nucleolus can be viewed as a vector measuring the power of each member of the
organization when the policy issue has the characteristics of distributive politics.

In the first part of the paper, we have reported our computation results concerning the
nucleolus and the Baron-Ferejohn measure of power for the organizations describing the five
consecutive stages of the EU. We have also formulated the design issue and alluded to the
difficulties attached to the resulting combinatorial problems. For the sake of illustration, we
have shown our optimization at works in the case of the EU in 1958. The low size (only
3 players) permits such a brutal approach. Among the lessons of this exercise, we were
able to confirm that making Luxembourg a dummy was appropriate but that Germany was
mistreated. Certainly the subsequent enlargements of the EU are much more difficult to
handle but we plan to address these issues in future research. To do so, we need to handle
efficiently all the computational issues attached to the nucleolus (Matsui and Matsui (2000),
Wolsey (1976)). Conceivably, to do so, we could consider first to pack the countries into
groups of almost equal population and to make two countries from the same group equally
desirable in the design of the simple game. Likely, the optimization over such subset of
simple games would be more easy to perform.

8 Appendix

8.1 Appendix 1: Cooperative Games?’, Least Core and Nucleolus

A cooperative game with transferable utility (TU) is a pair (N, V') where N = {1, ..., n} with
n > 2 is a finite set of players and V' is a function that associates a real number V' (.S) to each
subset S of N. It is assumed that V(&) = 0. It is constant-sum if V' (S)+V (N\S) = V(N). It
is monotonicif: S CT C N = V(S) < V(T). It is superadditive if V(SUT) > V(S)+V(T)
for all S;T C N such that SNT = @. A player i € N is a null-player (dummy) of (N, V)
if V(SU{i}) = V(S) (V(SU{i}) = V(S)+ V{l}). Hereafter, we denote by Xpp =
{y e R" | Y1, y" = V(N)} the set of (pre)imputations (or Pareto optimal imputations) and
by X;r ={yeR"| X" v =V(N), vy >V({j})Vj € N} the set of imputations i.e. the
set of individually rational preimputations. A player k € N is at least as desirable as a player
[l € N, denoted k = [ if V(SU{k}) > V(S U{l}) for all S C N\ {k,l}. The desirability
relation > is reflexive and transitive. If >~ is complete, the game is called a complete game.
According to Krohn and Sudhélter (1995), a directed game is a complete game such that®3
1>=2»=..=n.

Let X be a compact and convex subset of R” and let x € X. We denote by 6(z) the
2"-dimensional vector* whose components are the numbers e(S,z) = V(S) — >, g for
() € S C N arranged according to their magnitude, i.e., 9’(33) > Hj(:zc) for 1 <i<j<2m

22Gee Owen (2001) and Peleg and Sudholter (2003).

A directed game is the element of the equivalence (with respect to permutations of players) class of
complete games where the desirability relation is congruent to the natural order.

24This vector is called the vector of excesses attached to .
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The nucleolus of (N, V') with respect to X is the unique?® vector z* = N,(N,V) € X such
that 6(z*) is minimal, in the sense of the lexicographic order, of the sets {0(y) | y € X}.
The nucleolus of (N, V) with respect to X;z will be called hereafter the nucleolus; it is the
nucleolus as originally defined by Schmeidler (1969)%°. We denote also by ¢ (z) the 2"-
dimensional vector whose components are the numbers e(S,z) — e(T,z) for  C S, T C N
arranged according to their magnitude, i.e., W(x) > o) (z) for 1 <4 < j < 2% The modiclus
is the unique?” vector 2** € Xpp such that ¢)(z*) is minimal, in the sense of the lexicographic
order, of the sets {(y) | y € Xpo}.
Given a real number ¢, the € — core of (N, V) is the set

C.={reXpo:e(S,z)<eforal g LS & N}.

The least core of (N,V) denoted LC(V, N)?® is the intersection of all nonempty e— core of
(N,V). If (N,V) is superadditive, then LC(V, N) C Xg. In such case, LC(V, N) consists
of the vectors x such that ;(z) = 6,(z*). Note that then, 2* € LC(V, N).

8.2 Appendix 2 : Simple Games?

A simple game is a pair (N,YV) where N = {1,... ,n} with n > 2 is a finite set of players
and W is a set of subsets of N satisfying: N e W, @ ¢ Wand (SCT C N and SeW) =
T € W. The collection W of coalitions is the set of winning coalitions. The simple game
(N, W) is proper if S € W = N\S ¢ W. It is strong if S € W or (and) N\S € W. It is
constant sum (self-dual or decisive) if it is proper and strong®’. Hereafter, we will attach to
any simple (N, ) the monotonic TU cooperative game (N, V') where:

1ifSeWw
0 otherwise

V() = {

Note that (N, V) is superadditive iff (N,V) is proper and that (N, V) is constant-sum
iff (N, W) is decisive. A simple game (N, W) is a weighted majority game if there exists a
vector w = (w1, . ..,wy;q) of (n + 1) nonnegative real numbers such that a coalition S is in
WifE 3, gwi > ¢; g is referred to as the quota and w’ is the weight of player i € N. The
vector w is called a representation of the simple game (N, ). It is important to note that
the same game may admit several representations. A simple game is homogeneous if there
exists a representation w such that >, cw; = >, pw; for all S,T € W,, where W, denotes

ZFor a proof of uniqueness, see Peleg and Sudholter (2003).

In contrast, the prenucleolus is the nucleolus with respect to X = {y e R™ | 31" y* = V(N)}. If the
cooperative game is zero-monotonic, i.e., if V(S U {i}) = V(S) > V({i}) for all i € N and S C N\ {i},
the difference between the prenucleolus and the nucleolus vanishes. A simple game is always zero-monotonic
unless {7}, S € W for some i € N and S C N\ {i}.

2TThe modiclus has been introduced and studied by Sudholter (1996, 1997). For a proof of uniqueness,
we refer to his original papers or Peleg and Sudhélter (2003).

28The notion of least core was first introduced by Maschler, Peleg and Shapley (1979). Each payoff vector
of the least core of a zero-monotonic game is individually rational.

29See Von Neumann and Morgenstern (1944), Shapley (1962) and Taylor and Zwicker (1999).

30Some authors use the term strong for constant sum.
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the set of minimal winning coalitions. Such a representation when it exists is referred to as
a homogeneous representation. We note that if w; > w;, then player ¢ is at least as desirable
as a player j. Finally, we say that a representation is symmetric*! if w; = w; whenever i ~ j.

The dual of (N, W) is the simple game (N, B) where S € B if and only if N\S ¢ W.
The collection B of coalitions is the set of blocking coalitions.

8.3 Appendix 3: Representation and Enumeration of Simple Games

A representation of a weighted majority game (N, W) is an integral representation if w' €

N U {0} for all i € N. Note that, without loss of generality, the quota ¢ can be chosen to

be gw Vz;;nw(S ). An integral representation w is minimal if there does not exist any integral
EWnm

representation w’ of (N, W) such that ' < w. If w < W' for every integral representation
W' of (N, W), then is the minimum integral representation of (N,)V). A representation is
normalized if ¢ = 1.

In a strong simple game (N, V), an imputation x € X, is a normalized representation
of (N, W) if and only if ¢(z) = é\g/z\}n z(S) > 3. Peleg (1968) has proved that any imputation

in the least core of a strong weighted game (N, W) is a normalized representation of (N, W).
Therefore, in particular the nucleolus z* ((N,W)) of (N,V) is a normalized representation
of (N, ). He also proved that if (N, V) is a strong homogeneous weighted majority game,
then the nucleolus is the unique normalized homogeneous representation of (N, W) which
assigns a zero to each null player. The nucleolus has rational coordinates i.e. can be written
as z* (N, W)) = ﬁ where the w} for i € N are integers whose greatest common divisor
is 1. Peleg proves that if (N, W) is strong weighted majority game then w* is a minimal
integral representation if and only if w* (N) = 2¢ (w*) — 1. He also proved that if if (N, W) is
strong homogeneous weighted majority game then w* is a minimum integral representation
of (N,). Sudholter (1996) proved that if (N,)V) is a weighted majority game, then
the modiclus is a normalized representation of (N, W). Ostman (1987) and Rosenmuller
(1987) showed that every homogeneous weighted (not necessarily strong) majority game has
a minimal integral representation and that this representation is homogeneous. Sudholter
proved that, up to normalization, this minimal integral representation coincides with the
modiclus.

These results point out the existence of relationships between the nucleolus and the set
of minimal integral representations. It is important to call the attention on the fact that the
combinatorics of these relationships are however quite intricate. Peleg provides an example
of a strong weighted simple game with n = 12 for which w* is not a minimal integral
representation. Quite remarkably, Isbell (1969) provides an example of a strong weighted
simple game with n = 19 and a minimum integral representation w such that: w* # w.

Krohn and Sudholter (1995) proved that if (N, W) is a strong weighted majority game
and n < 8, then LC'(N,V) = N, (N, V) which coincides with the unique normalized minimal

31'We call the attention of the reader on the fact that Freixas, Molinero and Roura () call normalized such
representations. We think that this choice of terminology is misleading given the standard use of the word
normalized in this area.
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integral representation of (N, W). When n = 9, they obtain 319124 strong directed games
out of which exactly 175428 are weighted majority games. In such a case they show that
LC(N,V) is asingleton with the exception of exactly 12 games. Precisely, all strong weighted
majority games with n = 9 have a unique minimal normalized representation which coincides
with the least core and thus with the nucleolus with the exception of 14 games which have
exactly two minimal representations differing on one type of players. Moreover, in 12 of
these games both representations are exactly the extreme points of the least core. In the
remaining two cases, no normalized representation is contained in the least core though
the set is a singleton (i.e. coincides with the nucleolus)®?. Freixas and Molinero (2009)
also prove that when n = 9 any strong weighted majority game admits a unique minimal
normalized symmetric representation but when n = 10, there are strong weighted majority
games without a unique minimal symmetric representation and with more than two minimal
integral representations.

The enumeration of all simple games or important subclasses like for instance the sub-
classes of strong, complete, directed, weighted majority or subclasses obtained by intersection
of these subclasses is important for the combinatorial optimization conducted in our paper??.
This paper has been a topic of investigation since von Neumann and Morgenstern who enu-
merated all strong simple games when n = 5 and Gurk and Isbell (1959) who enumerated all
strong simple games when n = 6. Isbell (1959) provides the list of the 135 strong weighted
majority games when n < 7 together with their unique minimal integral representations; 38
of those games are homogeneous. Table 13 below reproduces the enumeration derived by
Krohn and Sudholter for games®* with n < 9.

Table 13:
n 1 2 3 4 5 6 7 8 9
# directed games 3 5 10 27 119 1173 44315 161175190 7
# weighted majority games 3 5 10 27 119 1113 29375 2730166 ?
# strong directed games 11 2 3 7 21 135 2470 319124
# strong weighted majority games 1 1 2 3 7 21 135 2470 175428
# homogeneous games 1 3 8 23 76 293 1307 6642 37882

The enumeration of all simple games (including the two constant ones attached to V(&) =
1 and V(N) = 0) is known as the Dedekind’s problem. Table 14 below reproduces the
enumeration for games with n < 6.

The enumeration of all strong simple games®” (including the two constant ones corre-
sponding to V(&) = 1 and V(IN) = 0) has also attracted attention. Table 15 below,

35(

32This result was also proved by Freixas, Molinaro and Roura (2007). They also prove that in the case
where n < 7, all weighted majority games have a unique minimal integral representation. Finally, they prove
that when n = 8, they are 154 weighted majority games with two minimal integral representations (of course,
we know from above that none of them is strong). They show however than they all have a unique minimal
symmetric integral representation.

33We may also consider those satisfying some symmetry conditions as in Loeb and Conway (2000).

34In this enumeration, they dont assume that @ ¢ W, N € W.

35Strong simple games are also often called maximal intersecting families of sets.
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Table 14:
n 1 2 3 4 5 6

# simple games 3 6 20 168 7581 7828354

extracted from Loeb and Conway (2000), reproduces the enumeration for games with n < 8.

Table 15:
n 1 2 3 4 5 6 7 8

# strong simple games 1 2 4 12 81 2646 1422564 229809982112

True, the enumerations in tables 14 and 15 count games which are isomorphic. If not,
the numbers decrease in a significant way as illustrated in table 16 below for games with
n<7.

Table 16:
n 1 2 3 45 6 7
# isomorphism classes of strong simple games 1 1 2 3 7 30 716

As already pointed out, we may also want to enumerate simple games satisfying some
symmetry properties described through the group of permutation automorphisms preserving
the set of minimal winning coalitions. Along these lines, we may also limit the enumeration
to games where some players are always treated similarly (the set of players is partitioned
into a number of types where two players from the same type are perfect substitutes in the
simple game). Freixas and Molinero (2009) and Kurz and Tautenhahn (2010) have derived
formulas to enumerate all such simple games.
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