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Abstract

In this paper, we analyze the equilibrium of a sequential game-theoretical model
of lobbying, due to Groseclose and Snyder (1996), describing a legislature that vote
over two alternatives, where two opposing lobbies, Lobby 0 and Lobby 1, compete
by bidding for legislators’ votes. In this model, the lobbyist moving first suffers from
a second mover advantage and will make an offer to a panel of legislators only if it
deters any credible counter-reaction from his opponent, i.e., if he anticipates to win
the battle. This paper departs from the existing literature in assuming that legislators
care about the consequence of their votes rather than their votes per se. Our main
focus is on the calculation of the smallest budget that he needs to win the game and
on the distribution of this budget across the legislators. We study the impact of the
key parameters of the game on these two variables and show the connection of this
problem with the combinatorics of sets and notions from cooperative game theory.
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1 Introduction

In this paper, we consider a theoretical model of lobbying describing a legislature! that vote
over two alternatives?, and two opposing lobbies, Lobby 0 and Lobby 1, compete by bidding
for legislators’ votes®. We examine how the voting outcome and the bribes offered to the
legislators depends on the lobbies” willingness to pay, legislators’ preferences and the decision
making process within the legislature.

There are many different ways to model the lobbying process. In this paper, we adopt
the sequential model pioneered by Groseclose and Snyder (1996) and followed up by Banks
(2000) and Diermeier and Myerson (1999). In their model, the competition between the two
lobbies is described by a targeted offers game where each lobby gets to move only once, and
in sequence. For most of the paper, Lobby 1 is pro-reform and moves first while Lobby 0
is pro-status quo and moves second. Votes are assumed to be observable. A strategy for
each lobby is a profile of offers where the offer made to each legislator is assumed to be
based on his/her vote and to be honored irrespective to the voting outcome. The net payoff
of a lobby is its gross willingness to pay less the total amount of payments made to the
legislators who ultimately vote for the policy advocated by this lobby. The legislators are
assumed to care about the outcome of the vote process and about monetary offers. Therefore,
voters do not truly act strategically as their voting behavior is simply a best response to the
pair of offers made by the lobbies and is independent of the decisions of other legislators.
We focus on the complete-information environment where the lobbies” and the legislators’
preferences are known to the lobbies when they bid. We characterize the main features of
the subgame perfect equilibrium of this game as a function of the following key parameters
of the environment.

- The maximal willingness to pay of each lobby for winning? (i.e., to have their favorite

policy selected). These two numbers represent the economic stakes under dispute and deter-

"'We depart from voluminous literature based on the common agency setting in abandoning the assumption
that policies are set by a single individual or by a cohesive, well-disciplined political party. In reality, most
policy decisions, are made not by one person but by a group of elected representatives acting as a legislative
body. Even when the legislature is controlled by a single party (as it is necessarily the case in a two-party
system if the legislature consists of a unique chamber), the delegation members do not always follow the
instructions of their party leaders.

2Hereafter, we will often refer to the two alternatives as being the status quo (alternative 0) versus the
change or reform (alternative 1). While simplistic, many policy issues fit that formulation like for instance:
to ratify or not a free-trade agreement, to forbid or not a free market for guns, to allow or not abortion.

3By legislators we mean here all individuals who have a constitutional role in the process of passing
legislation. This may include individuals from what is usually referred to as being the executive branch like
for instance the president or the vice-president.

40r, under an alternative interpretation, their respective budgets.



mine the intensity and asymmetry of the competition.

- The voting rule describing the legislative process.

- The heterogeneity across legislator’s preferences.

The binary setting considered in this paper is the simplest setting where we can tackle the
joint influence of these three inputs on the final outputs. The first item consists of a single
number per lobby: how much money this lobby is willing (able) to invest in this competition.
The second item is also very simple. In this simplistic institutional setting, with no room
for agenda setting or other sophisticated legislative action which would arise in the case of

5 we only need to know what are the winning coalitions, i.e., the

large multiplicity of issues
coalitions of legislators in position to impose the reform if the coalition unanimously supports
this choice. Despite its apparent simplicity, this combinatorial object is extremely rich to
accommodate a wide diversity of legislatures. Banks and Groseclose and Snyder focus on the
standard majority game while Diermeier and Myerson consider the general case as we do.
The third item describes the differences between the legislators others than those already
attached to the preceding item if these legislators are not equally powerful or influent in
the voting process. This “second” heterogeneity dimension refers to the differences between
their intrinsic preferences for the reform versus the status quo. This difference measured
in monetary units can be large or small and negative or positive. Diermeier and Myerson
disregard this dimension by assuming that legislators are indifferent between the two policies
while Banks and Groseclose and Snyder consider the general situation but derive their results
under some specific assumptions. We assume that legislators prefer unanimously the reform
to the status quo but differ with respect to the intensity of their preference.

All the papers in this literature assume that a legislator cares about his vote and not
about the outcome of the vote as assumed in this paper. Legislators who care about outcomes
are called consequential in contrast to procedural legislators who are those caring about
their vote (Le Breton and Zaporozhets (2009)). Both assumptions are perfectly legitimate
depending upon the type of policy issue under examination. The second assumption offers
a technical advantage as legislators are not playing a game anymore since the votes of the
other legislators do not influence their vote. In contrast, the first assumption preserves the
game theoretical nature of the voting stage as many legislators want to know if they are
pivotal and must therefore predict the voting behavior of the others.

The first contribution consists in identifying the conditions under which the lobby moving

®Many formal models of the legislative process have been developed by social scientists to deal with more
complicated choice environments. We refer the reader to Grossman and Helpman (2001) for lobbying models
with more than two alternatives.



first will make positive offers to some legislator. In this sequential game, the lobby moving
last has an advantage as it can react optimally to the offers of its opponent without any
further possibility or reaction. If the asymmetry is too weak, Lobby 1 will abandon the
prospect of influencing the legislature as it will be rationally anticipating its defeat; in fact,
it will make offers only if it anticipates to win for sure. If it does not make any offer, it is
enough for Lobby 0 to compensate a minimal winning coalition of legislators for their intrinsic
preferences towards reform. Lobby 1 will participate if its willingness to pay or budget is
larger than the willingness to pay or budget of Lobby 0. This minimal amount of asymmetry,
that we call the victory threshold, defines by how much the stake of Lobby 1 must overweight
the stake of Lobby 0 to make sure that Lobby 1 wins the game. Our first result states that the
calculation of the victory threshold amounts to calculate the supremum of a linear form over
a convex polytope which is closely related to the polytope of balanced families of coalitions
introduced in cooperative game theory to study the core and other solutions. The practical
value of this result relies on the fact that we can take advantage of the voluminous amount
of work which has been done on the description of balanced collections. When heterogeneity
across legislators’ preferences is ignored, the victory threshold only depends upon the simple
game describing the rules of the legislature. It corresponds to what has been called by
Diermeier and Myerson, the hurdle factor of the legislature. Quite surprisingly, this single
parameter acts a summary statistic as long as we want to predict the minimal budget that
Lobby 1 needs to invest to win the game. We will illustrate the connections between the
computation of the hurdle factor and the covering problem, which is one of the most famous,
but also difficult, problem in the combinatorics of sets or hypergraphs®.

The second contribution consists in showing that the victory threshold can be alterna-
tively calculated, surprisingly, as the maximum of specific criteria of equity over the set of
imputations of a cooperative game with transferable utility (TU game) attached to the sim-
ple game of the legislature. The specific equity criterion is the minimum over all coalitions of
the ratio of the difference between what the members of the coalition get in the imputation
and what they could get on their own and the size of the coalition, i.e., the first compo-
nent in the lexicographic order supporting the per-capita nucleolus that was introduced by
Grotte (1970). The connection with the theory of cooperative games turns out to be even
more surprising as it allows to provide a complete characterization of the second dimension
of the optimal offer strategy of Lobby 1. From what precedes, we know that the size of the
lobbying budget is the victory threshold times the willingness to pay (or budget) of Lobby

60f course, once it is noted that the hurdle factor is the fractional covering number of a specific hypergraph,
we can take advantage of the enormous body of knowledge in that area of combinatorics.



0. It remains to understand how this budget is going to be allocated across the legislators.
This is of course an important question as we would like to understand what are the char-
acteristics of a legislator which determine the willingness of Lobby 1 to buy its support and
the amount that he will receive for the selling his vote. As already discussed, legislators may
differ along two lines: the intensity of their preference for Lobby 1 and their position/power
in the legislature. Likely the price of the vote of a legislator will be a function of both
parameters. We show that the set of equilibrium offers is the per-capita least core of the
cooperative game used to calculate the victory threshold. We investigate their dependency
upon the desirability of the legislators and we show that it is not always the case that more
desirable legislators receive better offers. We also show how to calculate these prices in the
case of some important real world simple games. One important conclusion is that these
prices have little to do with the power of a legislator as calculated through either the Banzhaf
index (Banzhaf (1965), (1968)) or the Shapley-Shubik index (Shapley and Shubik (1954)).
This suggests that the axiomatic theory of power measurement may not be fully relevant to
predict the payoffs of the players in a game like this one’.

Related Literature

The literature on lobbying is very dispersed and voluminous®. The closest papers to ours
are Banks (2000), Dekel, Jackson and Wolinsky (2006a,b), Diermeier and Myerson (1999),
Groseclose and Snyder (1996), Le Breton and Zaporozhets (2009), Young (1978a,b,c) and
Shubik and Young (1978d). All these papers consider a binary setting but in contrast to this
paper, they assume that legislators care about their vote and money rather than the outcome.
As already mentioned, the two-round sequential vote buying model that we consider is from
the fundamental contribution of Groseclose and Snyder. Banks as well as Diermeier and
Myerson also consider this game. Their specific assumptions and focus are however quite
different from ours. Banks and Groseclose and Snyder are primarily interested in identifying
the number and the identity of the legislators who will receive an offer in the case of the simple
majority game. By considering this important but specific symmetric game, they eliminate
the possibility of evaluating the impact of the legislative power on the outcome. However,
they consider more general profiles of legislators’ preferences: Instead of our unanimity
assumption in favor of a reform, Banks assumes that a majority of legislators has an intrinsic
preference for the status quo. This implies that Lobby 1 needs to bribe at least a majority
to win; Banks provides conditions on the profile under which this majority will be minimal

or maximal but does not determine the optimal size in the general case. Diermeier and

"This echoes Snyder, Ting and Ansolabehere (2005).
8We refer the reader to Grossman and Helpman (2001) for a description of the state of the art.



Myerson assume instead that legislators do not have any intrinsic preference but consider an
arbitrary simple game. Their main focus is on the architecture of multicameral legislatures
and on the optimal behavior of each chamber under the presumption that it can select its
own hurdle factor to maximize the aggregate offer made to its members. Our paper is very
much related to the contributions of Young who has analyzed a similar game and derived
independently Proposition 2. He should receive credit for being the first one to point out the
relevance of the least core and the nucleolus to predict some dimensions of the equilibrium
strategies of the lobbyists.

Dekel, Jackson and Wolinsky examine an open-ended sequential game where lobbies
alternate in increasing their offers to legislators. By allowing lobbies to keep responding to
each other with counter-offers, their game eliminates the asymmetry and the resulting second
mover advantage of the game investigated by Groseclose and Snyder. Several settings are
considered depending upon the type of offers that lobbies can make to legislators (Up-front
payments versus promises contingent upon the voting outcome) and upon the role played
by budget constraints®. The difference in the budgets of the lobbies plays a critical role in
determining which lobby is successful when lobbies are budget constrained, and the difference
in their willingness to pay plays an important role when they are not budget constrained.
When lobbies are budget constrained, their main result states that the winning lobby is the
one whose budget plus half of the sum of the value that each legislator attaches to voting in
favor of this lobby exceeds the corresponding magnitude calculated for the other lobby. In
contrast, when lobbies are not budget constrained, what matters are the lobbies’ valuations
and the intensity of preferences of a particular “near-median” group of legislators. The lobby
with a-priori minority support wins when its valuation exceeds the other lobby’s valuation
by more than a magnitude that depends on the preferences of that near-median group. With
our terminology, we can say that their main results are motivated by the derivation of the
victory threshold. Once the value of this threshold is known, the identity of the winner as
well as the lobbying expenditures and the identity of bribed legislators follow. Note however
that they limit their analysis to the simple majority game and are not in position to evaluate
the intrinsic role of the simple game and the legislative power of legislators.

Note finally that our game would have the features of a Colonel Blotto game if the two
lobbies make their offers simultaneously instead of sequentially. These games are notoriously

difficult to solve and very little is known in the case of asymmetric players.

9These considerations which are irrelevant in the case of our two-round sequential game are important in
their game.



2 The Model and the Game

In this section, we describe formally the main ingredients of the problem as well as the
lobbying game which constitute our model of vote-buying by lobbyists.

The external forces that seek to influence the legislature are represented by two players,
whom we call Lobby 0 and Lobby 1. Lobby 1 wants the legislature to pass a bill (change,
proposal, reform) that would change some area of law. Lobby 0 is opposed to this bill and
wants to maintain the status quo. Lobby 0 is willing to spend up to Wy > 0 dollars to
prevent passage of the bill while Lobby 1 is willing to pay up to W; dollars to pass the bill.
Sometimes, we refer to these two policies in competition as being policies 0 and 1. We assume
that AW = W, — W, > 0. While this assumption may receive different interpretations'®,
we will assume here that the two lobbies represent faithfully the two opposite sides of the
society on this binary social agenda and therefore that policy 1 is the socially efficient policy.
We could consider that the two lobbies represent more private or local interests and that W;
and W)y ignore the implications of these policies on the rest of the society: In that case the
reference to social optimality should be abandoned. Finally, we could consider instead the
budgets B; and By of the two lobbies, and assume that they are budget constrained, i.e.,
that By < W; and By < W,. Under that interpretation, the ratio % should be replaced by
the ratio g—é. This ratio which is (by assumption) larger than 1 will be a key parameter in
our equilibrium analysis. Depending upon the interpretation, it could measure the intensity
of the superiority of the reform as compared to the status quo or the ex ante advantage of
Lobby 1 over Lobby 0 in terms of budgets.

The legislature is described by a simple game'!, i.e., a pair (N, W), where N = {1,...,n}
is the set of legislators and W, the set of winning coalitions, satisfies (i) @ ¢ W > N and (ii)
S €W and S C T implies T' € W. Sometimes, we identify a simple game (N, W) with its
corresponding TU game (N, V) defined by V(S) =1if S € Wand V(T) =0if T € 2N\ W.
The interpretation is the following. A bill is adopted if and only if the subset of legislators
who voted for the bill forms a winning coalition. From that perspective, the set of winning
coalitions describes the rules operating in the legislature to make decisions. A coalition C' is

blocking if N\ C is not winning: At least one legislator from C' is needed to form a winning

10 A5 explained forcefully in Dekel, Jackson and Wolinsky (2006a,b), in general, the equilibrium predictions
will be sensitive to the type of offers that can be made by the lobbies and whether they are budget constrained
or not. As explained later, these considerations are not relevant in the case of our lobbying game.

HTn social sciences (Shapley (1962)), it is sometimes called a committee or a voting game. In computer
science, it is called a quorum system (Holzman, Marcus and Peleg (1997)) while in mathematics, it is called
a hypergraph (Berge (1989), Bollobds (1986)). An excellent reference is Taylor and Zwicker (1999).



coalition. We will denote by B the subset of blocking coalitions'?; from the definition, the
status quo is maintained as soon as the set of legislators who voted against the bill forms a
blocking coalition. The simple game is called proper if S € W implies N\ S ¢ W. The simple
game is called strong if S ¢ VW implies N\ .S € W and constant-sum if it is both proper and
strong, i.e., equivalently if B = W!3. The simple game is called symmetric if S € W implies
T € W for all T C N such that #7 = #S. The set of minimal (with respect to inclusion)
winning (blocking) coalitions will be denoted W,,(B,,). A legislator is a dummy if he is not
a member of any minimal winning coalition, while a legislator is a wvetoer if he belongs to
all blocking coalitions. A group of legislators forms an oligarchy if a coalition is winning iff
it contains that group, i.e., each member of the oligarchy is a vetoer and the oligarchy does
not need any extra support to win (legislators outside the oligarchy are dummies). When
the oligarchy consists of a single legislator, the game is called dictatorial.

In this paper, all legislators are assumed to be biased towards policy 1, i.e., all of them
will vote for policy 1 against policy 0 if no other event interferes with the voting process.
It is introduced here for the sake of simplicity as, otherwise, we would have to consider an
additional parameter of differences among the legislators that we prefer to ignore for the time
being. Indeed, in contrast to Banks (2000) and Groseclose and Snyder (1996), our assumption
on the preferences of legislators rule out the existence of horizontal heterogeneity. However,
legislators also value money and we introduce instead some form of vertical heterogeneity.
Precisely, we assume that legislators may differ according to their willingness to depart from
social welfare. The type of legislator i, denoted by o’ > 0, is the minimal amount of dollars
that he needs to receive in order to sacrifice one dollar of social welfare. Therefore if the
policy adopted generates a level of social welfare equal to W, the payoff of legislator ¢ if he
receives a transfer ¢ is

'+ a'W.

To promote passage of the bill, Lobby 1 can promise to pay money to individual legislators
conditional on their supporting the bill. Similarly, Lobby 0 can promise to pay money to
individual legislators conditional on their opposing the bill. We denote by ¢} > 0 and ¢} > 0
the (conditional) offers made to legislator ¢ by lobbies 0 and 1 respectively. The corresponding
n-dimensional vectors will be denoted respectively by ¢, and ¢;.

The timing of actions and events that we consider to describe the lobbying game is the
following.

1. Nature draws the type of each legislator.

12Tn game theory, (NN, B) is often called the dual game.
13When the simple game is constant-sum, the two competing alternatives are treated equally.



2. Lobby 1 makes contingent monetary offers to individual legislators.

3. Lobby 0 observes the offers made by Lobby 1 and makes contingent monetary offers
to individual legislators

4. Legislators vote.

5. Payments (if any) are implemented.

This game has n + 2 players. A strategy for a lobby is a vector in R’}. Each legislator
can chose among two (pure) strategies: to oppose or to support the bill.

To complete the description of the game, it remains to specify the information held by
the players when they act. In this paper, we have already implicitly assumed that the votes
of the legislators are observable, i.e., open voting, and that the vector a = (a!,a?,...,a")
of legislators’ types is common knowledge and without loss of generality such that o! <
a? < ... < o™ We refer to this informational environment as political certainty. It has two
implications: First, the lobbies know the types of the legislators when they make their offers

and second, each legislator knows the type of any other legislator when voting!*.

3 The Victory Threshold

In this section, we begin our examination of the subgame perfect Nash equilibria of the
lobbying game. Hereafter, we will refer to them simply as equilibria. Our first objective is to
calculate a key parameter of the game, that we call the victory threshold. Once calculated,
this parameter leads to the following preliminary description of the equilibrium. Either, the
ratio % is larger than or equal to the victory threshold and then Lobby 1 makes an offer and
wins the game, or %1) is smaller than the victory threshold and then Lobby 1 does not make
any offer and Lobby 0 wins the game. The victory threshold depends both upon the vector
of types a and the simple game (N, W). Given the second mover advantage, the victory
threshold is larger than or equal to 1. Therefore, while necessary, W7 > W) is not sufficient
in general to guarantee the victory of Lobby 1. The victory threshold provides the smallest
value of the relative difference leading to such victory.

A coalition ' C N will be called blockingt if S = T\{i} € B,, for alli € T. Let us denote
by B the family of minimal blocking™ coalitions. To prepare for the first proposition, let us
examine intuitively the reaction ¢ty = (t)),. 5 of Lobby 0 to the vector of offers t; = (),

made by Lobby 1. The legislators can be partitioned into three groups. The first group

14The environment where the type o of legislator 4 is a private information, to which we refer as political
uncertainty, is analyzed in Le Breton and Zaporozhets (2007) in the case where the two lobbies move
simultaneously.



S; consists of the legislators i such that t§ < t!. The second group S, consists of all the
legislators ¢ such that ¢t} < ti < +a’AW. The third group S3 consists of all the legislators
i such that ¢ >t} + o'AW.

Voting for the reform is a dominant strategy for the legislators from the first group while
voting for the status quo is a dominant strategy for the legislators in the third group. The
strategic interaction and the necessity to evaluate the probability of being pivotal only apply
to the legislators from the second group. If a legislator does not consider himself to be
pivotal, then it is optimal to vote for the status quo. Instead, if he considers his vote to
be pivotal, then it is optimal to vote for the reform. We want the profile of votes from the
legislators in that group to form a Nash equilibrium. Let S be the coalition of legislators
being in the second or third group, i.e., S = Sy U S3. When is it the case that the profile
where all the legislators in S vote for the status quo is a Nash equilibrium?

From what precedes, it is necessary and sufficient that no legislator ¢ from S5 considers
his vote to be pivotal. This will be the case if S\ {i} € B. For any S € B let

Sy={icS|S\{i} € B}

and S3 =S\ S,. Let gm be the family of minimal coalitions in B according to the order <
defined as follows for all S,5" € B: S < S"iff S CS" and Sy C S} (and, hence S5 C S%).
The strategic optimal response of Lobby 0 is now easy to describe. From its perspective,

the cheapest coalitions belong to the family gm To any such coalition S = S, U S5, the

D+ (i +a'AW)

1€S2 1€S3

smallest cost is equal to:

It is interesting to see what coalitions are elements of l§m First, all the coalitions S in

B, belong to gm They correspond to the case where S, = (). Their cost is therefore:
Z (t] + ' AW)
€S

At the other extreme, all the coalitions S in B belong to B, They correspond to the

case where S5 = (). Their cost is therefore:
2t
i€s
This reasoning calls for two observations. We note first that in the case where the simple

game is symmetric, we obtain: B, = B, U B . Second, it is important to note that we have

10



determined conditions under which there exists a Nash profile of votes leading to rejection
of the reform. This does not mean of course that this Nash equilibrium is unique. For the
sake of illustration, consider the case of a symmetric game for which the minimal size of a
blocking coalition if b and let S € B, with the offer defined above. From above, we know
that voting against the reform for all voters in S leads to a Nash equilibrium: The b + 1
voters in S vote no if tj = ¢! + & where £ > 0 for all i € S and ¢} = 0 otherwise. There are
however other Nash equilibria. For instance take two legislators, say 1 and 2, out of the b+ 1
legislators and let them vote for the reform while the b — 1 others keep voting against the
reform. This profile of votes induces the reform as b — 1 is not enough to block. It is a Nash
equilibrium. The voters in S who keep voting against the reform play optimally as they are
not pivotal. The voters 1 and 2 who vote in favor of the reform also vote optimally as they

are pivotal, t] + AW > t} and t? + a?AW > t}. This new Nash equilibrium calls for some

b(b+1)
2

is subordinated to the selection of this particular continuation equilibrium'® which focuses

coordination and there are any such equilibria. The calculation of the cheapest offer

on the worst case from the perspective of Lobby 1: Following its vector of offers, what is the
worst Nash equilibria in the continuation game?

The “pessimistic” subgame-perfect equilibrium of this sequential version of the lobbying
game can be easily described. Let t; = (¢,¢1,...,#) € R” be Lobby 1’s offers. Lobby 0 will
find profitable to make a counter-offer if there exists a coalition S = S, U S5 € gm such that:

D+ (i + o' AW) < Wy

1€S7 i€S3
Indeed, in this case, there exists a vector ty = (t},3,...,t5) of offers such that:
t +a'AW <t} for all i € S3, t} < t, for all i € Sy and Zté < Wh.
ics
Therefore, if Lobby 1 wants to make an offer that cannot be cancelled by Lobby 0, it

must satisfy the list of inequalities:
S+ (B +a'AW) > W for all S =S, U Ss € By,
i€S2 i€S3

The cheapest offer £; meeting these constraints is solution of the following linear program:
mmtleRi ZieN t

subject to the constraints (1)
Dies, T+ 2 ies, (B + ' AW) > W for all S = S, U S5 € By,

15There are also some mixed Nash equilibria.
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Lobby 1 will find profitable to offer the optimal solution ¢} of Problem (1) if the optimal
value to this linear program is less than Wj. It is then important to be able to compute
this optimal value. To do so, we first introduce the following definition from combinatorial
theory.

Definition 1. Let C be a family of coalitions. For i € N define C' = {S € C|i e S}.

1. A vector § € R#C is called a vector of subbalancing coefficients for C if

> 6(S) < Lforallie N
Seci
and 6(S) > 0forall SeC.

2. The collection C is balanced if there exists 6 € R#C, called vector of balancing coeffi-

cients for C, such that

> 6(S) = Lforallie N
Seci
and §(S) > Oforall S eC.

(Hence, a balanced collection is nonempty.)

Let:
V(S) = Wo — ZiGSg ' AW, %f S = §2 USs € B,
0 ,if S ¢ B,
The following result summarizes the equilibrium analysis of the sequential game.

Proposition 1.

L If Wy > > geg, 0(S)V(S) for all vectors of subbalancing coefficients ¢ for B,,, then
there exists a subgame perfect equilibrium in which Lobby 1 makes an offer ¢} selected
among the optimal solutions to Problem (1), Lobby 0 does not make any offer and the
bill is passed.

2. If Wi < D e, 0(S)V(S) for at least one vector of subbalancing coefficients § for By,

then, for any S € B, that satisfies W* = Dics, AW = min 7, . o' AW, W* < W,
T€B,

and for any 0 < ¢ < Wy — W™ there exists a subgame perfect e-equilibrium in which

Lobby 1 does not make any offer and Lobby 0 offers ¢}, where ¢}’ = o' AW + # for all
1 € S5 and t;j = # for all j € S5 so that the bill is not passed.

12



Proof: Let v* (g, a) be the optimal value of Problem (1). From the duality theorem of

linear programming, v* (g , a> is the optimal value of the following linear program:

max Z 3(S) [WO - ZO/AW

S€Bm €53

subject to the constraints
> s(S)<tlforallieN
SeBi,
and §(S) > 0 for all S € B,

The conclusion follows. [

When a = 0, the determination of the cheapest offer for Lobby 1 simplifies to:

ieN "1
t1€R™

subject to the constraints (3)

and ), o4 > W, for all S € B,,

It is immediate to see that the optimal value v* (g, O) of (3) is proportional to Wj.
Hereafter, it will denoted simply by v*(B)W, where v*(B) is the hurdle factor as defined by
Diermeier and Myerson (1999) which is the value of the problem:

max Y 55 0(9)
subject to the constraints
Y osepi0(S) <1forallieN

and §(S) >0 forall S € B

It is straightforward to show that the value v* <f>’\, a) of (1) lies somewhere between
Y(B)Wo — AW 3. v o and +*(B)Wj. This is not surprising since this linear program has
more constraints than the linear program attached to the procedural behavioral model and
therefore v* (B, a) is at least equal to the victory threshold derived in the procedural case.

From above, we deduce that if we are in Case 1 of Proposition 1, then:

W > V' (B) + Yien @
Wo = 14+, no

(4)

The practical value of Proposition 1 is to reduce the derivation of the victory threshold to the

exploration of the geometry of a convex polytope: the polytope of vectors of subbalancing

13



coefficients. To use it efficiently, it may be appropriate to consider an arbitrary family
of balanced coalitions, i.e., with edges not necessarily in l§m In the statement, we can
trivially replace “ ¢ .z 0(S5) [WO — D iess aiAW} for all vectors of subbalancing coefficients
§ for By, by “Ssen 0(S)V(S) for all vectors of balancing coefficients ¢ for 2%”. The first
formulation is useful as soon as we are in position to characterize the vector of subbalancing
coefficients attached to the family of coalitions gm, i.e., to the simple game!®. This amounts
essentially to explore the combinatorics of the simple game. A classification of simple games
was first provided by von Neumann and Morgenstern (1944) and further explored by Isbell
(1956, 1959). The second formulation takes advantage of the tremendous volume of research
accomplished in cooperative game theory. Indeed, is well know since Bondareva (1963) and
Shapley (1967) that a TU game has a nonempty core iff it is balanced. As pointed out by
Shapley, this amounts to check the balancedness inequalities for the extreme points of the
polytope of balanced collections of coalitions. He demonstrated that vector  is an extreme
point of the polytope of balanced collections iff the collection of coalitions {S C N | 6(S) > 0}
is minimal in terms of inclusion within the set of balanced collections of coalitions. A minimal
balanced collection has at most n sets'”. Peleg (1965) has given an algorithm for constructing
the minimal balanced sets inductively. We illustrate the mechanical use of Proposition 1
through a sequence of simple examples.

Example 1. Consider the simple majority game with 3 legislators where S € B,, iff
#S =2 ie, S =1{1,2}, {1,3}, {2,3} and B = {N}. Besides the partitions, the unique
minimal balanced family of coalitions is {{1,2},{1,3},{2,3}} with the vector of balancing

coefficients (%, %, %) From the ordering of the o’ and the proof of Proposition 1, we deduce
that
3Wy —2(at 2 AW
v'(B,a) = max{Wg — (oz1 +a2) AW, 0 (a J;a +a’) W, 0} and
. 3
7B = 5

The first and last terms are never the largest; v*(B, a) = W, whenever 2 (a! + a? + o*) AW >
Wy. When a! = a? = o3, this happens when:
1+ 6al
Wy >
Y= 6al

We will examine later how to derive the optimal (offers) of Lobby 1 and in particular the

Wo

personal characteristics of the legislators who are offered some positive amount. This will

16Holzman, Marcus and Peleg (1997) contains results on the polytope of balancing coefficients for an
arbitrary proper and strong simple game.

1"We refer the reader to Owen (2001) and Peleg and Sudhélter (2003) for a complete and nice exposition
of this material.
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depend obviously on two main features: o', i.e., his/her personal propensity to vote against
social welfare and also its position in the family of coalitions. If legislator ¢ is a dummy then,
obviously, t{ = 0. But if he is not a dummy, then in principle all situations are conceivable:
He may receive something in all optimal offers, in some of them or in none of them. It will be
important to know the status of a legislator according to this classification in three groups.

Example 2. Consider the simple game with 4 legislators'® where S € B,, iff S = {1, 2},
{1,3}, {1,4} or {2,3,4}. According to Shapley (1967), besides the partitions, the minimal

balanced families of coalitions are (up to permutations) the collections

({1,2,3},{1,2,4} ,{1,3,4} ,{2,3,4}}, {{1,2} . {1, 3} . {1, 4} , {2, 3,4} },
125,41, 33, 42,30, 14, 1L, 21, {1, 3,41, 42,3, 43}

with the respective vectors of balancing coefficients (%, %, %, %) , (%, %, %, %) , (%, %, %, 1) and
(%, %, %) . We deduce from the proof of Proposition 1 that:

4W0—(3a1+a2+a3+a4)AW 5Wo—3(a1+a2+a3+a4)AW 2Wo—(2a1+a2+a3)AW
3 ) 3 J 2 )
3W07<2a1+2a2+o¢3+a4)AW ’

3 s WO—((){1+OZ2)AVV,WO,O

v (B, @) = max

Y(B) = g

3

When o! = a? = a® = a?, we obtain:

e 1
v* (B, @) = G max {8Wo — 12a' AW, 10Wy — 240’ AW, 9W, — 18a' AW, 6W, }

The representation of the different affine functions of a! that appear in the above expres-

sion leads to

_ 1 .
10Wo—24a' AW 7 if 0 S Oél < Wo

~ = 6AW?
* _ 8Wo—12a AW % 1 TW(
V(B a) = G i gar < @ < mas
e 1 TWo
Wo R TN

Example 3. Consider the following simple game with 3 legislators and S € B, iff
S ={1,2} or {1,3}. The set of vectors of balancing coefficients has already been described
in Example 1. We deduce easily that

v*(gm,a) = maX{Wo—alAW,O} and
7(B) = 1

18 As demonstrated by von Neumann and Morgenstern ((1944), 52C), this is the unique proper and strong
simple four-person game without dummies.
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If we reverse the order of plays between the two lobbies, then it suffices to replace B by
W in all the statements above. Using the same technique, we would compute v*(W, ) and
v*(W). We will call these two numbers respectively the dual victory threshold and the dual

integral factor.

4 Complements and Extensions

Proposition 1 constitutes an important element of the toolkit to determine the victory thresh-
old. In this section, we continue the exploration of the problem having in mind to add more
elements in the toolkit. In the first subsection, we show that in the special case where a = 0,
our problem is strongly connected to one of the most famous problems in the combinatorics
of sets. We elaborate on the relationship with this branch of applied mathematics and show
how to take advantage of this body of knowledge to get a better understanding of our own
questions, on top of which is the determination of the hurdle factors attached to a simple
game. In the second subsection, we illustrate the use of this branch of mathematics through
a selected sample of examples. In the third subsection, we show that, quite surprisingly, the
set of equilibrium offers to the legislators made by the first mover lobby coincides with the
per capita least core of the simple game. We show that this per capita least core coincides

with the least core (and therefore contains the nucleolus) when a = 0.

4.1 Fractional Matchings and Coverings

The main purpose of this subsection is to connect our problem to the covering problem which
is considered to be one of the most famous problems in the combinatorics of sets. As pointed
out by Fiiredi (1988), “the great importance of the covering problem is supported by the
fact that apparently all combinatorial problems can be reformulated as the determination of
the covering number of a certain hypergraph”. A hypergraph is an ordered pair H = (N, H)
where N is a nonempty finite set of n vertices and H is a nonempty collection of nonempty
subsets of N called edges. The rank of H is the integer r(H) = max {#FE : E € H}. If every
member of H has r elements, we call H r-uniform. An r-uniform hypergraph H is called
r-partite if there exists a partition P of N such that #(S N E) =1 holds for all £ € H and
all S € P. The degree of the hypergraph H, denoted D(H), is the number max;ecy #H' (for
the notation H* see Definition 1). A hypergraph is D-regular if #H* = D(H) for all i € N.
Given positive integers k and s, a hypergraph is k-wise s-intersecting if the cardinality of the
intersection of any k edges is at least s; s-intersecting and intersecting are used for 2-wise

s-intersecting and 1-intersecting, respectively. A hypergraph (N, H) is an r-clique if it is
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intersecting and if there does not exist S € 2V \ H such that #S = r and (N, H U {S}) is
an intersecting hypergraph, that is, an r-clique is a maximal intersecting family of rank r.

Given a positive integer k, a k-cover of H is a vector t € {0,1,...,k}" such that

D >k forall S €H. (5)
ies
A k-matching of H is a vector 6 € {0, ..., k}™ such that
> 6(S) <k (6)
ScH?
A 1-cover (1-matching) is simply called a cover (matching) of H. Note that the covers
of H may simply be identified with a subsets of N that have nonempty intersections with

19

any edge™. Similarly, the matchings of H may be identified with collections of pairwise

disjoint members of H. A k-cover ¢t* minimizing >, 5t subject to the constraints (5)
is called an optimal k-cover and ~;(H) = >, 1" is called the k-covering number. A
k-matching 0* maximizing ) ¢, 9(S) subject to the constraints (6) is called an optimal
k-matching and pj(H) = ZSCN_'Y*(S) is called the k-matching number. Hence, ~;(H) is the
minimum cardinality of the covers and is called the covering number of H while pf(H) is the
maximum cardinality of a matching and is called the matching number of H. A hypergraph
H with #H > 2 is v-critical if each of its subfamilies has a smaller covering number, i.e.,
YN, H\{E})) <~i(H) for all E € H.

A fractional cover of H is a vector t € R™ such that

Yt > lforall SeH (7)
€S
and t' > Oforalli€ N. (8)

A fractional matching of H is a vector § € R#* such that

> 5(8) < lforallie N (9)
SeH:
and 6(S) > Oforall S € H. (10)

A fractional cover t* minimizing Y, ¢’ subject to the constraints (7) and (8) is called
an optimal fractional cover and v*(H) = > ..y t** is called the fractional covering number.
A fractional matching 0* maximizing ) ., 6(S) subject to the constraints (9) and (10)
is called an optimal fractional matching and p*(H) = ) gy 0°(S5) is called the fractional

matching number.

YIndeed, if t is a cover of H, then T'= {i € N | ¢' = 1} satisfies TN E # 0 for all E € H and, vice versa,
if TC N with TNE # 0 for all E € H, then xr € R" defined by x4 =1ifi €T and x}, =0if j € N\ T is
a cover of H.
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4.2 Hurdle, Dual Integral and Uniform Hurdle Factors

It follows immediately from these definitions that the hurdle factor v*(B) is the fractional
covering number of H = (N, B) while the dual hurdle factor 4*(W) is the fractional covering
number of H = (N, W). If, in contrast to what has been assumed in the preceding section,
money is available in indivisible units, then the appropriate parameter becomes 3y, (C) where
the integer W, is the value of policy 0 for Lobby 0 (when C = B, i.e., when Lobby 0 is the
follower) expressed in monetary units. The case where W = 1 is of particular interest as it
describes the situation where Lobby 0 has a single unit of money to spend in the process. The
problem is now purely combinatorial: To whom of the legislators should Lobby 1 spend one
unit to prevent Lobby 0 from targeting a unique pivotal legislator?°? Hereafter, the integer
v (B) will be called the integral hurdle factor and the integer v (W) will be called the integral
dual hurdle factor. While we will focus mostly on the divisible case, it is interesting to note
the implications of indivisibilities on the equilibrium outcome of the lobbying game. The
following developments apply equally to both hurdle factors and we will often use the symbol
‘H without specifying whether H = B or H = W. For an arbitrary hypergraph H, we have
the inequalities:

pe(H) oo, vi(H)
i SM(H)—W(H)Skk

Ml( )_ L

< i (H). (11)

We deduce immediately from these inequalities that the value of the hurdle factor?!
increases with the “degree” of indivisibilities; indivisibilities act as additional integer con-
straints in the linear program describing the determination of the optimal fractional match-
ings and coverings. The relationships between these numbers are intricate and their in-
vestigation is an active subject of research in the theory of hypergraphs. For the sake of
illustration, we report below some of the most significant results. The calculation of the
covering number of an arbitrary hypergraph is an NP-hard problem in contrast to the deter-
mination of the fractional covering number which amounts to solve a linear program without
any integer constraints. In addition to those discussed in Le Breton and Zaporozhets (2009),
the examples presented below arise from the theory of simple games.

It is often assumed that the simple game (N, W) is proper, i.e., the set of minimal winning
coalitions is an intersecting family. In such case, it is clear that the pattern of intersections of

winning coalitions plays some role in the determination of the integral and fractional hurdle

20To support that interpretation, we need however to assume that a legislator who is indifferent breaks
the tie in direction of Lobby 0.

21Tt has been demonstrated by Chung, Fiiredi, Garey and Graham (1988) that for any rational number ,
there exists a, hypergraph H = (N, H) such that p*(H) = =.
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factors. Since a cover is a set which intersects every edge, we deduce that any set in W is a
cover. This implies that the dual integral hurdle factor is then smaller than mingeyy #E and
that Lobby 0 will have to bribe a subset of legislators no larger than the size of the smallest
winning coalition. Lobby 0 may have to pay less like for instance in the case where all
minimal winning coalitions contain a prescribed subset of legislators (the vetoers); in such
case, 7;(W) = 1. This simple game displays a severe asymmetric treatment of legislators
and we may wonder if some lower bounds on could be obtained if we impose more structure
on W.

There is an obvious trade-off between the number of minimal winning coalitions and the
magnitude of the dual hurdle factor®?. Suppose that to reflect equity among the legislators,
all minimal winning coalitions are of the same size r, i.e., W, is r-uniform. If we have
many coalitions in W,,, the hurdle factors are more likely to be large numbers. The hurdle
factors are often very sensitive to the addition or the deletion of a coalition from W,,,. These
patterns correspond to what has been defined above as 7-critical hypergraphs. How small
can be a r-uniform hypergraph if we want the covering number to be at least equal to 7

To answer this question, let s be a positive integer. A set 7' C N is an s-multicover of
H is either # (ENT) > sor T O F for all E € H. Hence, a 1-multicover of H is simply
a cover of H. The s-multicover number of H is the smallest cardinality of an s-multicover
of H. If H is s-intersecting, then an s-multicover T is called nontrivial if # (T NE) < #E
for all E € H. As defined earlier, an r-clique is an intersecting r-uniform hypergraph which
does not have a non-trivial cover (i.e., a cover that has less than r elements). We can also
consider the family H, .,y of r-uniform hypergraphs H which are intersecting and such that
v (H) = ~ where v is a given integer less than or equal to r. If we denote by m(r) the
minimum number of edges in an r-clique and by n(r) the minimum number of edges for a

hypergraph in Hy,,y. As reported in Fiiredi (1988):
3r<m(r) <r° forall r >4

and

8
37~ 3 < n(r) for all  and n(q + 1) < 4¢ /qlogq if g is a prime power.

This means that for all r there exist small r-cliques and small r-uniform hypergraphs
with an integral hurdle factor equal to r but also that some minimal critical number of
edges are necessary for the properties to be fulfilled. Fiiredi (1988) also reports many results

describing some of the properties of critical hypergraphs and specific families of hypergraphs.

228ee Idzik, Katona and Vohra (2001) for an exploration of the intersecting balanced families of sets.
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4.3 Uniform Hurdle factor

Besides integer constraints (due to the indivisibility of money), we have not considered
restrictions on the offers made by the lobbies to the legislators. In particular, the offers
of a lobby can differ across legislators. In this subsection, we are going to sort out the
implications of assuming that all the legislators receiving an offer from a lobby receive the
same offer?®. This means that from the perspective of any one of the two lobbies, the
population of legislators is partitioned into two groups: those who receive an offer from that
lobby and those who don’t. Let T} denote the group of legislators receiving an offer from
Lobby 1 and let s; be the amount of the offer to each member of T}, i.e., t{ = s;xr,. Since
this limitation applies equally to both, Lobby 0 and Lobby 1, the cheapest offer s; meeting
these constraints is solution of the following linear program

min s1 - #17

(Th,s1)€2N xR

subject to the constraints (12)
s1-#S > Wy forall S € B,
and SNT, # 0 for all S € B,,.

On one hand, the second set of constraints exclude the cases where S N7} = (). Indeed,
in such case ti = 0 for all i € S and Lobby 0 can easily bribe coalition S. On the other
hand, if the inequality s; - #S5 > W, is violated, i.e., t; - #5 < W, then there exists sy > s;
such that sg - #5 < Wy. An offer of an amount equal to sy to each of the legislators in S
will be accepted by all legislators in .S N T} and trivially by all those who are not in 7;. It
is important to note that the constraint s; - #5 > W, is less demanding than the constraint
sy - #(SNTy) > W,y which would describe the situation where Lobby 0 is not constrained
by the uniformity assumption. The solution of the above problem is strongly connected
to the solution of the covering problem. Since it is linear in Wy, let W, = 1. First, we
note immediately from the second set of constraints that the set 77 must be a cover for the
hypergraph (N, B,,). On the other hand, the tightest constraint in the first set of constraints
are those attached to the smallest S in B,,. If (17, s}) is an optimal solution of (12), then

we may deduce that
1

min #S
SGBm#

*7
81_

23This assumption is made by Le Breton and Zaporozhets (2007) in their examination of the uncertainty
setting. Morgan and Vardy (2007, 2008) refer to these offers as non-discriminatory vote buying.
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and 77 is a minimal cover of (N, B). Using our notations, we deduce that the value of the
above linear program with integer constraints, called hereafter the uniform hurdle factor and

denoted 7} (B), is equal to

71(Bm) |
s

Ya(B) =

We would determine similarly the dual uniform hurdle factor, denoted ~}(W), as

. W)
7 (W) = min#S
Sew

We have obtained, a quite surprising connection between the uniform hurdle factors and
the integral hurdle factors. It provides an extra justification to compute the integral hurdle
factors. Both uniform hurdle factors are smaller than their integral counterparts meaning
that the uniformity constraint hurts less Lobby 1 than the indivisibility constraint. Note

also that whenever W is a proper simple game, then:
Tu(W) <1

If we consider the simple game of Example 2, we obtain that }(B) = 1 which is less
than v*(B) = 2. Note also that in such case, if Lobby 0 was not constrained by uniformity,

the factor would jump to 2 which is, as expected, larger than v*(B).

4.4 Weighted majority Games

In this section, we focus on the class of weighted majority games. A simple game is a
weighted majority game if there exists a vector w = (w',...,w"; q) of (n + 1) nonnegative
real numbers such that a coalition S is in W iff °, 4w’ > ¢ so that, by the definition of
a simple game, (i) ¢ > 0 and (ii) Y ", w" > ¢. Note that w' is the weight attached to
legislator?* i. The vector w is called a representation of the simple game. It is important to
note that the same game may admit several representations. A simple game is homogeneous
if there exists a representation w such that Y, (w’ =", ;w' for all S,T € W,,.
Throughout, we assume that N = {1,...,n} with n > 2. Consider an arbitrary TU
game (N,V)and let z € X, = {y e R" | >." ' =V(N),yy > V({j})Vj € N}. Let 6(x)

be the 2" — 2-dimensional vector®® whose components are the numbers V(S) — >, s «* for

24In most legislatures, legislators belong to political parties. Party discipline refers to the situation where
any two legislators belonging to the same party vote similarly. Then, if two legislators ¢ and j belonging to
the same party are such that of = o, it is appropriate to assume that the players are the parties rather
than the legislators themselves; in such case, w”* denotes the number of legislators affiliated to Party k.
25This vector is called the vector of excesses attached to x.
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0 # S S N arranged according to their magnitude, i.e., §°(z) > 67 (x) for 1 <i < j < 2" —2.

~

Similarly, let 6(x) be the 2" — 2 dimensional vector whose components are the numbers
% for § # S & N also arranged according to their magnitude, i.e., é\’(x) > é\](a:)
for 1 <4 < j <2"—2. The nucleolus and the per-capita nucleolus®® of (N, V') are the unique
vectors x*, 7% € X, such that 6(z*) and (5(:6*)) are minimal, in the sense of the lexicographic

-~

order, of the sets {8(y) | y € X,,} and {G(y) |y € Xn}, respectively. For the definition and

uniqueness of z* and z* see Schmeidler (1969), Justmann (1977), and Wallmeier (1983). The

27 are the subsets of X,, consisting of the vectors x

least core and the per-capita least core

such that 6;(z) = 6;(z*) and 0, (x) = 51(55*), respectively. These polytopes will be denoted

LC(V,N) and L/b(V, N). Note that, by construction z* € LC(V, N) and T* € L/ZJ(V, N).
Let P, = 2N\ {0, N}. To any TU game V we attach the linear program

: )
min eyt

subject to the constraints (13)
ettt > V(S) for all S € P,.

Let v (V') be the value of this problem. Then V' is balanced iff V' (N) > ~(V'). Moreover,

let
* . V(S) - ZieS yi
C*(V) = minmax———=

(14)

The following simple assertion holds.

Proposition 2. If (N, V) is a TU game, then v(V) = V(N) + nC*(V).

Proof: Let ¢ = M and let ¢* be an optimal solution of the linear program (13).
Define z = t — exn and observe that Y, y z* = V(N). Moreover,

V(S) = Yiest’  V(S) = Segti —c-#8
#S B 4S9

<e forall SeP,

so that C*(V) <e.

268trictly speaking, this is the (per-capita) prenucleolus. The nucleolus and the per-capita nucleolus
are defined on the set of individually rational payoffs. If the cooperative game is zero-monotonic, i.e., if
V(Su{i}) = V(S) > V({i}) for all i € N and S C N \ {i}, the difference between the prenucleolus and
the nucleolus vanishes. A simple game is always zero-monotonic unless {i}, S € W for some i € N and
S C N\ {i}. The per-capita prenucleolus may be different from the per-capita nucleolus even for a zero-
monotonic weighted majority game: Let n = 4 and (N, V) be represented by w = (1,1,1,0;2), i.e., (N, W)
arises from the simple 3-person majority game by just adding a null-player. The per-capita prenucleolus
coincides with %(3, 3,3,—1) and, hence, assigns a negative amount to the nullplayer, whereas the per-capita
nucleolus coincides with the prenucleolus and the nucleolus given by %(17 1,1,0).

2TThe notion of the (per-capita) least core was first introduced by Maschler, Peleg and Shapley (1979). The
example in Footnote 26 shows that the per-capita least core may contain elements that are not individually
rational even for zero-monotonic games. However, each payoff vector of the least core of a zero-monotonic
game is individually rational.
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To prove the opposite inequality let y € X,, such that

V(S) - ZiES yl i
W as©

(V)
and define z = y + C*(V)xn. Then, for any S € P,

DA =D Y+ C(V)#S = V(S)
€S €S
so that
V(N)+nC* (V) =) 2" > y(V) = V(N) +ne
ieEN

and, hence, C*(V) > e. O

The argument is also quite instructive by itself as it demonstrates that the set of solutions
of the linear program (13) above is strongly connected to the per-capita least core®® of the
cooperative TU game V. In the case of the determination of the optimal offer(s) by Lobby
1, the TU game V is defined by (2).

Remark 1. Proposition 1 remains valid if the TU game V defined by (2) is replaced

by the TU game V' that differs from V' only inasmuch as B,, is replaced by B, i.e., the TU
game V"' is defined by

- Wo—ziesgaiAW ,ifS:SQUS;gGB,
V<S)_{ 0 it S €2V \ B. (15)

Indeed, as B, C B and V(S) = V'(S) for all S € By,

max < Y. 0(S)V(S)

SEBm

< maxq >, I(S)V'(S )‘ J is a vector of subbalancing coefficients for B } :
SeB

0 is a vector of subbalancing coefficients for gm}

In order to show the opposite inequality, note that, for any S € B, there exists Se gm such
that S C S and §3 = S3. Now, if § is a vector of subbalancing coefficients for B, then we

may define a vector 5 of subbalancing coefficients for B, by

3(T) =D {6(S)| S=T}forall T € B,,.

28Gtrictly speaking it is the least core whenever the core of the game is empty. Here, we will focus almost
exclusively onto that case.
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As V/(8) = V/(S) for all S € B,

> A(TV(T) =D 5(S)V(S).
TEB, SeB
When a = 0, the above calculations can be further simplified. Indeed in such a case, the
game V' is up to the multiplication by Wy, the simple game

1, if SeB,
0, otherwise.

vis) = {

Applying (14) to V' yields
1— ZieS yi min ZiES yi
YEXnSEPy 49 yEXn SEB\{N} #S T orean\(Bufey)  #S

VI(S) =S o
C* (V') = minmax (9) = 2ies ¥ :minmax{ max ——&esd

This implies that the hurdle factor v*(B) is equal to 1 +nC*. Let

= max min L

ye{2€R |3,y 2i=1 }9EBm Py

Following the same line of arguments as above, it is easy to show that v*(B) = CL Moreover,
any x € R" that satisfies ), v’ =1 and >, gz" > C* for all S € B,,, is an clement
of LC(V',N), provided that V' is zero-monotonic. This means that in this case, the hurdle
factor can be computed either via the least core or the per-capita least core. A similar
statement is valid for the dual hurdle factor. From now on, we focus on the case where
a=0.

In some cases it will be possible to order, partially or totally, the legislators according to
desirability as defined by Maschler and Peleg (1966). Legislator i € N is at least as desirable
as legislator j € N if SU{j} € W implies SU {i} € W for all S C N\ {i,j}. Legislators i
and j are symmetric or interchangeable if SU{j} € Wiff SU{i} € Wfor all S C N\ {4, j}.
Legislator 7 is said to be strictly more desirable than legislator j if S U {j} € W implies
SU{i} e Wiorall S C N\{4,j} and SU{i} € W and SU{j} ¢ W for some S C N\ {1, j}.
Example 4 below shows that two symmetric legislators do not necessarily receive the same
offer from Lobby 1 in all equilibria of the lobbying game.

Example 4

Consider the proper and strong weighted majority game that has the representation

(17,9,8,6.5,6.5,5, 3,2, 2; 30)
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According to Krohn and Sudholter (1995), the least core is the convex hull of the
normalized vectors of weights that correspond to the weights of the representation except
for players 4 and 5 who may receive 7/59 and 6/59 or symmetrically 6/59 and®® 7/59.

In this example, the violation of desirability relation applies to two legislators who are
interchangeable and to a situation where the least core does not degenerate on the nucleolus.
We will see now that this “pathological” behavior of legislator’s prices do not extend to strict
desirability. Peleg (1968) has demonstrated that for a proper and strong weighted majority
game, any imputation in the least core is a representation. Since a representation assigns a
bigger weight to a strictly more desirable player, it follows that the price offered to legislator
1 is larger than the price offered to legislator j in all equilibria, if legislator ¢ is strictly more
desirable than legislator 5. This monotonicity property does not extend to weighted majority
games which are not proper and strong as demonstrated by Example 5 below.

Example 5

Consider the following 6-person game with representation
(5,5,4,3,2,2;14)

taken from Kopelowitz (1967). We claim that the vector x = (1, 1,0, 1,0,0)/3 belongs to the
least core. According to Kopelowitz, the nucleolus is (4,4,3,2,1,1)/15 and, hence, it assigns
2/3 to the winning coalition {1,2,5,6}. Now, the vector = assigns to each winning coalition
at least 2/3 and it is nonnegative. Hence, the maximal excess is 1/3 in both cases. However,

player 3 is strictly more desirable than 4.

5 Applications

In this last section, we illustrate the techniques and notions introduced before by considering
different families of simple games. First, we consider simple games where winning coalitions
are large and therefore blocking coalitions are small. We show how to use some results from
the theory of graphs to compute the hurdle factor(s) or to obtain approximation of these
numbers. In a second part, we look at specific real world simple games described as vector-

weighted majority games of low dimension and we also calculate the relevant parameters.

29The least core of each proper and strong weighted majority game with less than 9 legislators is a singleton
so that in this case symmetric legislators receive the same offer.
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5.1 Simple Games with Large Winning Coalitions (Small Blocking
Coalitions)

When we consider the hypergraph of the minimal blocking coalitions of a simple game,
the fractional and integral covering numbers are likely to be large numbers when its set of
edges contains many small coalitions. This will happen as soon as in the simple game, a
coalition is winning if it contains most of the players. The extreme case of such situation
is unanimity according to which a coalition is winning if it contains all the legislators. In
such case, any singleton is a blocking coalition and then ui(B) = v*(B) = 7;(B) = n. The
“closest” situation to unanimity is the case where each winning coalition contains at least
n — 1 legislators. This case has been extensively studied by several authors including Lucas
(1966), Maschler (1963) and Owen ((1968), (1977)). We now consider the more general case
that each winning coalition contains at least n — 2 legislators and that for any three-person
coalition T" C N there is i € T with N\ (T \ {i}) ¢ W. In such a case each minimal
blocking coalition consists either of a single vetoer or it is a pair of legislators. Hence, in the
particular subcase that each (n —1)-person coalition is winning, i.e., that vetoers are absent,
the hypergraph (N, B,,) of minimal blocking coalitions is, in fact, an ordinary graph, and
we may reconstruct from B, via duality, the set VW of winning coalitions: Indeed, S € W,,
if and only if either S = N\ {i} for some ¢ € N such that {i,j} € B for all j € N\ {i} or
S = N\ {i,j} for some i,j € N such that {i,7} ¢ B.

In such a case, we can take advantage of the results established in the theory of graphs
to derive information on the different hurdle factors. In that respect, it will also be useful
to calculate the matching and fractional matching numbers to obtain lower bounds on the
hurdle factor(s) via (11). The largest possible value of v*(B) is § which is realized, for
instance, when the graph is complete. From the point of view of matchings®, it correspond
to what is called in graph theory as a perfect matching. If there is a perfect matching, we
deduce from (11) that v*(B) = 5. If the graph is bipartite, Hall’s theorem provides necessary
and sufficient condition for the existence such a perfect matching. For an arbitrary graph,
Tutte’s beautiful theorem?! also provides necessary and sufficient condition for the existence
such a perfect matching.

When there is no perfect matching, we can still explore the set of maximum matchings

and obtain a lower bound on 7*(B) through inequality (11). We know from Lovasz (1975)

30The results on matching theory to which we refer here can be found in Lovasz and Plummer (2006). A
friendly presentation is offered by Simeone (2006).
311t also follows from that theorem that p3(H) = 2v*(H) = ~v5(H).
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that

v (H) < pi(H) —QMT(H)
The celebrated Edmonds-Gallai structure theorem offers deep insights on the structure of
any maximum matching. In order to make the best possible use of Proposition 1 in such case,
it is important to characterize the family of balanced collections. It has been demonstrated
by Balinski (1972) that § is an extreme point of the polytope of fractional matchings iff there
exists a collection () of node-disjoint edges and odd cycles such that

Lif {i,5} € Q,

6({i,j}) = ¢ 3 if {i,5} belongs to an odd cycle of @,

0 otherwise.
This important result suggests to identify the partitions of N with the largest number of
vertices either belonging to an odd cycle or a to a pair. The length of the longest odd cycle
or the cumulate length of a disjoint family of odd cycles provide lower bounds for v*(B).
However, these questions are not easy from a computational perspective.

As already discussed, not all the pairs need to be blocking. Besides the fact that the
legislators may differ in term of power, in some circumstances some “feasible” pairs can be
simply ignored by Lobby 1 if they are unlikely to form. In such a case, the simple game not
only describes the rules of the legislature but also incorporates information about character-
istics of the legislators relevant to predict which potential blocking coalitions could form. If
the population of legislators is partitioned according to several types like for instance gender,
geography, ethnicity or ideology, some coalitions, corresponding to a particular mixing of the
types, may be considered as unfeasible. A nice illustration is the case of a bicameral system
where to be winning a coalition must contain all the members or at least one of the two
chambers. In such case, the hypergraph of blocking coalitions consists of all pairs with one
member in each chamber; in this bicameral illustration, the graph of blocking coalitions is
simply the complete bipartite graph. Consider the case of a legislature with equal numbers
of males and females and assume that a proposal is blocked if the coalition contains at least
one female and one male. If all such coalitions are likely to form, the set of minimal blocking
coalitions consists of all pairs composed with a male and a female. If in addition, legislators

are also differentiated according to left and right®?, then it is reasonable to assume that only

32The construction of the relevant blocking pairs may of course be more complicated. Consider for instance
the case where the legislators are located in a multidimensional Euclidean ideological space and let d;; denote
the distance between ¢ and j. If we assume that two legislators act together iff their distance does not exceed
some exogenous threshold p, the set of relevant minimal blocking coalitions is the set of pairs {i,j} such
that d;; < p. An interesting case deserving further exploration is the case where there is a hierarchy among
the legislators. It would correspond here to the case where the legislators could be ordered say from 1 to n
in such a way that if {j, k} € B for some j < k, then {i,k} € B for all i < j.
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pairs of legislators with the same ideology form. Let p,; and pg, respectively, denote the
proportions of left legislators in the male and female population and assume, for the sake of
simplicity, that py, < % and py+ pr = 1. Using Konig’s theorem on bipartite graphs, it is
easy to show that

(W) = ' W) = v* W) = (W) = npu.

This last example is peculiar as the long chain of inequalities (11) degenerates into a
perfect equality®*: The integral and fractional hurdle factors are equal and coincide them-
selves with the integral and fractional matching numbers. Calculating the matching number
is quite easy as it amounts to find a partition of the set of legislators into the largest possible
number of blocking coalitions. Therefore, when the above equalities hold, the calculation of

the hurdle factor becomes very easy.

5.2 Vector Weighted Majority Games

Every simple game is a vector weighted majority games as defined by Taylor and Zwicker
(1999). A simple game (N, W) is a vector-weighted majority game if there exists a positive
for all ¢ € N, and a

§)1§j§k .
k-tuple quota q = (qj)1<j<k such that for every coalition S C N, S € Wift ), _qw; > ¢;

integer k, an assignment of k-tuple weights to the players (w

for all j = 1,...,k. A simple game is said of dimension k if it can be represented using
k-tuples as weights and quota but cannot be represented using (k — 1)-tuples as weights and
quotas. Hereafter we shall focus on vector-weighted majority games with a small dimension.
This class includes all the weighted majority games (i.e., vector-weighted majority game
of dimension 1) as defined earlier (like for instance the United nations Security Council)
but also many important real world examples which are not weighted majority games like
for instance the Canadian constitutional amendment scheme, the US legislative system, the
European rule and voting by count and account. In this subsection we derive the hurdle
factors for a sample of real world vector weighted majority games describing the decision
making process of some important organizations.

Example 6 (The United Nations Security Council). The voters are the 15 countries
that make up the security council, 5 of which are called permanent members whereas the
other 10 are called nonpermanent members. Passage requires to total of at least 9 votes,
subject to approval from any one of the 5 permanent members. It is easy to show that

this simple game is a weighted majority game: Assigning a weight of 7 to each permanent

33A hypergraph for which this is true is called normal and a nice characterization has been obtained by
Lovasz (1972).
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member, a weight of 1 to any nonpermanent member and a quota equal to 39 provides
a representation. If Lobby 1 acts to pass a reform (here a resolution), the problem of
determination of the least core reduces to the minimization of 5x; + 10x, with respect to

(z1,22) € R under the constraints

T Z 1 and 73722 1.

1
7
and that the hurdle factor 5 + 1—70 is approximately equal to 6.43.

We deduce that the least core consists of the unique vector (1 ) (which is the nucleolus)
If instead Lobby 0 acts to block a reform, the problem of determination of the least core

reduces to the minimization of 5x; + 10z with respect to (x1,x3) € ]R%r under the constraint
51’1 -+ 433'2 Z 1.

Now we obtain that the least core consists of the unique vector (%,0) (which is the
nucleolus) and that the dual hurdle factor is equal to 1. Here, only the permanent members
receive an offer and with a hurdle factor equal to 1, lobbying expenditures by Lobby 1 remain
moderate. We could wonder what would be the consequences of limiting somehow the veto
power of the permanent members and/or changing the level of the qualified majority to pass
a reform. For instance, suppose that passage requires to total of at least 9 votes, subject to

approval of at least 3 permanent members. The constraints now becomes
3x1 + 6x3 > 1 and by + 4z9 > 1.

In that case, if as above, Lobby 0 acts to block a reform, both permanent and nonper-
manent members are likely to receive offers as the least core consists of the convex hull of
the vectors (%, 0) and (%, %) and the dual hurdle factor g is approximately equal to 1.66.
Consider finally the case where passage requires to total of at least 10 votes, subject to

approval of at least 3 permanent members. The constraints now becomes
3r1+ Txy > 1 and bzy + e > 1.

It is straightforward to show that the least core consists of the unique vector (lio, %o)
(which is the nucleolus) and that the dual hurdle factor is equal to 1.50.

From 1954 to 1965, the simple game (N, W) describing the council had 5 permanent
members, 6 nonpermanent members and the qualified majority was equal to 7. Proceeding
as above, we obtain that the hurdle factor v* (B) was equal to 6.20 while v* (W) = 1. The
1965 system is less vulnerable to lobbying than the 1954’s one. It would be interesting to use
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this apparatus to evaluate some of the proposals to reform membership and voting rules of
the United Nations Security Council. Many countries criticize the lack of representativeness
of the current council. Among the proposals, we can find:

- The G4 proposal which ask the addition of 6 new permanent members without veto
power and 4 new nonpermanent members.

- The African proposal which is similar to the G4 proposal except for the fact that it asks
that the new permanent members also had a veto power and 5 new permanent members
instead of 4.

- The “United for Consensus” proposal which simply asks for the addition of 10 new
permanent members.

These proposals propose to increase the current size of 15 members to 25 or 26 members.
In our setting being a permanent member without veto power is equivalent to be a nonper-
manent member. No specification of the required qualified majority is provided but given
the historical attachment to a supermajority requirement of 60 — 63%, we could expect a
quota equal to 15. The first, second, and third proposal, respectively, leads to a hurdle fac-
tor v* (B) equal to approximately 8.67, 12.25, and 8.67. A way to compromise between the
first and second proposal could consist in offering to each pair (or triple) of new permanent
members a veto power. To compromise with the third, we could increase the quota from 15
to 18. In general, a council composed of n; permanent members with regular veto voter,
ny permanent members with veto voter offered to pairs, ng = n — n; — ny nonpermanent
members, and a quota equal to g, where ny +ns < ¢ <n — 1, leads to a hurdle factor equal

to
ng

U]
n+ — + .
! 2 n1+n2—|—n3+1—q

Example 7 (Amending the Canadian Constitution). We consider first the impres-
sive scheme for amending the Canadian constitution, proposed at the Victoria conference
in 1971 (Straffin (1993)). The problem in designing a constitutional amendment scheme
for Canada is that the Canadian provinces are very jealous of their constitutional prerog-
atives and extraordinarily diverse both in politics and in size. The provinces of Ontario
and Québec together contained 64% of the Canadian population in 1970, whereas the four
small “Atlantic” provinces together contained less than 10%. This extreme diversity suggests
asymmetric treatment of the provinces in a constitutional amendment scheme, but exactly
how to do it is a delicate matter. The Victoria scheme proposed that a constitutional

amendment would have to be approved by:
- both Ontario (O) and Québec (Q), and

30



- at least two of the four Atlantic provinces (New Brunswick (NB), Nova Scotia (NS),
Newfoundland (NF) and Prince Edward Island (PEI)) and

- British Columbia (BC) and at least one of the prairie provinces (i.e., Alberta (A),
Saskatchewan (S), Manitoba (M)) or all three prairie provinces.

The three components Wi, W, and Ws of this tricameral simple game W are easy to
analyze: W, is the unanimity game with two players, Ws is the symmetric game with four
players and a quota equal to 2 and Wj is the apex game (example 2) with four players. We
deduce that the hurdle factor v*(W) of W is equal to min (v*(Wh), v*(Ws),7*(Ws)) = min
(1,2,2) = 1. Similarly the hurdle factor of the dual game B, v*(B), is equal to v*(B;) +
v (Ba) + v*(Bs) = 2+ 3 + 2 = 5. For this last simple game, O and Q receive each 20 %,
each of the four Atlantic provinces receives 6.67 %, BC receives 13.33 % while A, S and M
receive each 6.67 %.

The constitutional amendment scheme which Canada finally adopted in 1982 was far less
equitable than the Victoria scheme, in the sense that voting power as measured by either
index does not approximate population at all (Kilgour (1983)). According to this scheme, to
be approved, an amendment needs the support of at least two-thirds of the provinces that
have, in the aggregate, according to the then latest general census, at least fifty percent of
the population of all the provinces. The first principle implies that at least 7 of out the
10 provinces are needed to pass the amendment or equivalently any 4 provinces can block
an amendment. On the basis of the 1981 census, no single province can block an amend-
ment; the minimal blocking coalitions are {O,Q}, {O, BC, A},{O,BC, M}, {0, BC,S},
{0, BC, NS}, and all 4-person coalitions that do not contain any of the foregoing coalitions.
It can be verified that v*(B) = 3. Here the least core of G = (N, B) does not collapse on the
nucleolus. The game (N, W) is not strong and for instance there are imputations in the least
core of GG that do not strictly respect the desirability relation. Moreover, the desirability

relation of GG is complete, but G is not a weighted majority game.

6 Concluding Remarks

In this paper, we have examined the equilibrium behavior of two lobbyists playing sequen-
tially to buy the votes of legislators. In doing so, we have highlighted the key role played by
the hurdle factor which is a parameter of the simple game describing the decision making
process in the legislature. When the hurdle factor is large, it is less likely to observe lobbying
at equilibrium but when it happens, lobbying activities are more significant. We have pointed

out the connection between the computation of the hurdle factor and the covering problems
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in graph theory. Among the applications, a special attention has been devoted to two cases:
on the one hand, the case where minimal blocking coalitions are pairs of legislators and on
the other hand, the case of vector weighted majority games.

This last topic calls for more applications of our methods. One important example of vec-
tor weighted majority game is provided by the rules of governance of the Current European
Union and the Enlarged European Union. Another important class of games is the class of
linear games with consensus (Carreras and Freixas (2004)), pioneered by Peleg (1992) under
the heading “voting by count and account” (Peleg (1992)). The 1982 constitutional amend-
ment scheme is part of this family. The general question of the computation of the hurdle
factor and the characterization of the least core for such class of games is still unexplored.
The account side appears in organization where the financial contributions of the members
play a role in the determination of their voting rights like in the IMF where only the financial
weight matters. This voting system leads to some under-representation of the developing
and transition countries and have been criticized on several grounds. Some new voting rules
have been suggested (Brauninger(2003), Hirokawa and Vlach (2006), Leech (2002), Morgan
(2007), O’Neill and Peleg (2000), Rapkin and Strand (2006)). It would be useful to evaluate

the hurdle factors and least cores of these new alternative schemes.
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