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Abstract

The science of social networks is a central �eld of sociological study, a major appli-

cation of random graph theory, and an emerging area of study by economists, statistical

physicists and computer scientists. While these literatures are (slowly) becoming aware

of each other, and on occasion drawing from one another, they are still largely distinct in

their methods, interests, and goals. Here, my aim is to provide some perspective on the

research from these literatures, with a focus on the formal modeling of social networks

and the two major types of models: those based on random graphs and those based on

game theoretic reasoning. I highlight some of the strengths, weaknesses, and potential

synergies between these two network modeling approaches.
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1 Introduction

Social networks are the fabric of many of our interactions. Such networks include the relation-

ships among friends and relatives with whom we share information and favors on a regular

basis, and reach as far as in�uencing decisions by many of the world�s companies regarding

with whom and how they conduct their business. The many regularities in network structure

across applications makes a scienti�c study of social networks a possibility. The deep and

pervasive impact that networks have on behavior makes such a study a necessity.

The science of social networks was initiated by sociologists more than a century ago, and

has grown to be a central �eld of sociological study over the past �fty years.1 Over that

same period, a mathematical literature on the structure of random graphs moved steadily

along, but with intermittent but surprisingly few ties to the sociological literature.2 While

economists have occasionally showed interest in networks, an explosion of studies of networks

using game-theoretic modeling techniques and with economic perspectives has occurred over

the last decade.3 A recent awakening of an interest in social networks has also occurred in the

computer science and statistical physics literatures, mainly over the past �ve or six years.4

While these literatures are (slowly) becoming aware of each other, and on occasion drawing

from one another, they are still largely distinct in their methods, interests, and approaches.

My goal here is to provide some perspective on the research from these literatures, with a

focus on the formal modeling of social networks, and to highlight some of the strengths,

weaknesses, and potential synergies between the two main approaches.

Given the breadth of these combined literatures, and the fact that there are surveys

covering the various literatures,5 my aim here is not to try to give a comprehensive overview

of the literatures, but rather to try to put some of the main contributions and techniques of

formal modeling of social networks in context and to relate them to each other. I focus on

two main threads of the literatures: the �rst is models of the formation of networks and the
1See Freeman (2004) for some history of thought of the sociology literature.
2See Bollobás (2001) for a survey of the random graph literature.
3The books Dutta and Jackson (2003) and Demange and Wooders (2004) contain various surveys and

papers.
4See Newman (2003).
5The sociology literature is too vast for any article to adequately survey, but introductory texts, such as

Wasserman and Faust (1994), as well as the recent history of thought book by Freeman (2004), are useful

starting points. Concerning the economics literature, see Jackson (2003, 2004) for strategic modeling of

networks; van den Nouweland (2004) for graphs and networks in cooperative game theory; Goyal (2004) for

learning on networks; Ioannides and Datcher-Loury (2004) for networks in labor economics; Page and Kamat

(2004) for farsighted formation of networks; and Bloch (2004) for networks in industrial organization. See

Newman (2003, 2004) for surveys covering some of the recent statistical physics and part of the computer

science literatures. There are also books that touch on some parts of the physics literature, such as Watts

(1999), Barabasi (2002), Vega-Redondo (2004). A text that bridges some of the modeling from the various

literatures is by Jackson (2005).
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second is models of how social behavior and economic outcomes are in�uenced by network

structure.

In order to provide some context, I start by giving some basic background on social

networks and a very cursory look at a few things that have been learned from empirical

studies. Next, I turn to discuss models of formation of networks. Here, I distinguish between

two di¤erent approaches that have been taken. One has its roots in the random graph

literature and models formation by specifying either some stochastic process or an algorithmic

process through which the links in a network are formed. This literature has mainly focussed

on deducing properties of large networks. The second approach is game theoretic and stems

from the economics literature. It has mainly focussed on models where the links are formed

at the discretion of the nodes who derive bene�ts and face costs associated with various

links and network con�gurations. These two approaches lead to very complementary insights

regarding networks, each of which is adapted to answering di¤erent sorts of questions. They

also have di¤erent strengths and weaknesses that I highlight. Finally, I discuss models that

take network structure as a given and study the in�uence that networks have on social

and/or economic outcomes. This last area of study shows why the science of social networks

is important for more than just an understanding of the networks themselves.

2 Some Background on Networks

The systematic study of social networks by sociologists dates from the 1920�s and 30�s, took

root in the 1960�s, and has grown rapidly over the past four decades.6 That literature includes

many case studies from which has emerged a rich mosaic of characteristics that are shared

by many social networks, as well as a taxonomy for measuring and describing social networks

and a broad set of hypotheses and theories about network form and in�uence. Much of what

I discuss in this section is either directly from that literature, or was in�uenced by it.

2.1 Some Examples of Social Networks

To �x ideas, let me begin by presenting two networks that have been studied in some detail.

This gives an idea of various applications, as well as a glimpse of some of the characteristics

that have been studied.

Example 1 Florentine Marriages

The �rst example is a network analyzed by Padgett and Ansell (1993). It is the network

of marriages between the key families in Florence in the 1430�s. The following �gure provides
6Again, see Freeman (2004) for some history of thought. Interestingly, while Freeman laments the discon-

nect between the traditional sociology literature and the emerging physics literature on networks, the gulf

between the sociology and economics literatures seems to be at least as large.
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the links between the key families in Florence at that time, where a link represents a marriage

between members of the two linked families.7

Figure 1: 15th Century Florentine Marriges (Padgett and Ansell (1993))

As Padgett and Ansell (1993) explain, during this time period the Medici (with Cosimo

de�Medici playing the key role) rose in power and largely consolidated control of the business

and politics of Florence. Previously Florence had been ruled by an oligarchy of elite families.

If one examines wealth and political clout, however, the Medici did not stand out at this

point and so one has to look at the structure of social relationships to understand why it was

the Medici who rose in power. For instance, the Strozzi had both greater wealth and seats in

the local legislature, and yet the Medici rose to eclipse them. A key to understanding this,

as Padgett and Ansell (1993) detail, can be seen in the network structure.

Let P (ij) denote the number of shortest paths connecting family i to family j.8 Let

Pk(ij) denote the number of these shortest paths between i and j that include k as a node

on one of the links. Now in order to get a fuller feel for how central families are, we can look

at an average of this betweeness calculation. Averaging across all pairs of other families and
7The data here were originally collected by Kent [218], but were �rst coded by Padgett and Ansell (1993)

who discuss the network relationships in more detail.
8For formal de�nitions of paths, distances, and related notions, see below.

4



normalizing by the number of possible pairs gives us a betweeness measure (due to Freeman

(1977)) for a given family. In particular, betweeness centrality is de�ned as
P
ij

Pk(ij)=P (ij)
(n�1)(n�2)=2

for each family k. This measure of betweeness for the Medici is .522. That means that

if we look at all the shortest paths between various families (other than the Medici) in this

network, the Medici lie on over half of them!9 In contrast, a similar calculation for the Strozzi

comes out at .103, or just over ten percent. The second highest family in terms of betweeness

after the Medici is the Guadagni with a betweeness of .255. To the extent that marriage

relationships were keys to communicating information, business deals, and reaching political

decisions, the Medici were much better positioned than other families, at least according to

this notion of betweeness. While aided by circumstance (for instance, �scal problems resulting

from wars), it was the Medici and not some other family that ended up consolidating power.

As Padgett and Ansell (1993) explain, �Medician political control was produced by network

disjunctures within the elite, which the Medici alone spanned.�

It should be emphasized that the Medici came to have such a special position in the

network through careful planning. As Padgett and Ansell [286] say (footnote 13), �The

modern reader may need reminding that all of the elite marriages recorded here were arranged

by patriarchs (or their equivalents) in the two families. Intraelite marriages were conceived

of partially in political alliance terms.� Thus, in order to understand how this network, and

not some other network, came to arise it is important to have models of strategic network

formation, a theme that we shall return to.

2.2 Some Notation

With one example of a social network under our belt, let me now introduce some basic de�-

nitions, as these will be useful in discussing the second example and what follows thereafter.

Let N = f1; 2; : : : ; ng denote a set of nodes, which represent the social agents who might
be tied in a network of social relationships. In the example above, these are the Florentine

families. In the next example these are individual people (researchers), and in other examples

they might be �rms, web pages, countries, etc.

A network g can be represented by an n� n matrix taking on values 0 or 1. The idea is
that if gij = 1, then i is linked to j. In various applications, it might be that these links are

undirected, as in the Florentine families example where marriage is a reciprocal relationship.

In such settings gij = gji by necessity. In other applications, such as an example where a link

represents a citation of one research article by another, the network is naturally directed. In

such cases, it is possible that gij = 1 6= 0 = gji.10

9This network only codes a set of the key families at the time, and the full data set includes many more

marriages and families.
10This is a basic, but still very useful and standard way of encoding networks. In some applications, the
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For simplicity in notation, I write ij to represent the link between i and j, and also write

ij 2 g to indicate that i and j are linked under the network g. Shorthand notations for the
network obtained by adding or deleting a link ij to or from an existing network g are g + ij

and g � ij, respectively.
For any network g and agent or node i, let Ni(g) be the neighborhood of i in g, that is,

the set of agents linked to i in the network g, so that Ni(g) = fj j ij 2 gg.
A path in a network g 2 G between agents i and j is a sequence of agents i1; : : : ; iK such

that ikik+1 2 g for each k 2 f1; : : : ;K � 1g, with i1 = i and iK = j. The length of such a

path is K � 1, the number of links involved.11

A component of a network is a maximal connected subgraph. That is, g0 is a component

of g if: (a) g0 is a subnetwork of g (so ij 2 g0 only if ij 2 g), (b) ij 2 g0 and k` 2 g0 implies
that there is a path between i and k in g0, and (c) ij 2 g0 and ik 2 g implies ik 2 g0. The
network pictured in Figure 3 has two components, one consisting of the isolated node 25, and

the other consisting of the graph between nodes 1 to 24.

The distance between two nodes i and j, denoted d(i; j), is the minimum path length

between i and j (and set to be in�nite if no such path exists).

The diameter of a network g is de�ned as �d(g) = maxi;j d(i; j), the maximum distance

between any two nodes. If a network is not connected (there are at least two nodes that

have no path between them), then the diameter is in�nite. As many social networks are not

connected, the diameter is often reported for the largest component. For example, in Figure

1, the network is not connected as the Pucci are isolated, and the diameter of the largest

component is 5 (the distance from the Pazzi to the Lambertes or the Pazzi to the Peruzzi).

Another characteristic of networks is referred to under a variety of names including

cliquishness, transitivity, and clustering. While there are many variations, the basic idea

is to measure how dense the network is on a very local level. Given a node, what fraction

of that node�s friends or neighbors are friends or neighbors of each other? In particular, if i

has links to both j and k, are j and k linked to each other?12 The percentage of times that

the answer is �yes�with regard to a node i is i�s clustering coe¢ cient. One can then average

strength of a link or some other aspect of link may be important, or there may be di¤erent types of links that

can be simultaneously held between nodes. For the purposes of this article, I will stick with the basic model.
11 In the case of directed networks, one can keep track of directed paths as well as undirected ones. I will

be explicit when necessary, and otherwise assume that links are treated as if they are not directed.
12For a directed network, one can either treat links as if they are undirected, or else can look for cycles

(when directed links ij and jk are present, one counts the percent of ki�s).
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across all nodes in the network. Thus the clustering for a node i is13

Ci(g) =
#fjk 2 g j k 6= j; j 2 Ni(g); k 2 Ni(g)g
#fjk j k 6= j; j 2 Ni(g); k 2 Ni(g)g

:

In Figure 1, the clustering for the Medici is 1/15, for the Bisteri is 1/3, and for the Guadagni

is 0. The average clustering coe¢ cient is14

Cavg(g) =
X
i

Ci(g)

n
:

Example 2 Erdös Numbers and Co-authorship Networks Among Researchers

With some de�nitions in hand, let us turn to another example. Our next example concerns

much larger networks. These are networks that keep track of collaboration among researchers.

Here a link represents the co-authorship of a paper during some time period covered by the

study. The well-known and proli�c mathematician Paul Erdös had many co-authors, and

as a fun distraction many mathematicians (and economists for that matter) have found

the shortest path(s) from themselves to Erdös. 15 These networks are also of scienti�c

interest themselves, as they tell us something about how research is conducted and also how

information and innovation might be disseminated. Such studies have now been conducted

in various �elds, including mathematics (Grossman and Ion (1995), de Castro and Grossman

(1999)), biology and physics (Newman (2001, 2002)), and economics (Goyal, van der Leij and

Moraga-González (2003)). Various statistics from these studies give us some impression of

the network structure.16

One interesting feature of the networks concerns the path lengths. Here we see that

despite the noncomparabilities of the networks along many dimensions, average path length

and diameters of each of the networks are very comparable. Moreover, these are of an order

13 If the node i has fewer than two neighbors so that the denominator is of Ci(g) is 0, then one can adopt the

convention of setting Ci(g) = 1. When averaging across i to determine average clustering, such a convention

can make a di¤erence and so it makes sense to ignore nodes that have fewer than two neighbors.
14Note that this weights the calculations by averaging across nodes rather than links. That is, a node that

has just two neighbors is weighted the same as a node that has two hundred neighbors, even though the second

node accounts for many more potential triangles in the network. An alternative measure simply examines the

number of times the link ik is present over all combinations of pairs of links ij and ik in the network, and

divides by the number of pairs of links present in the network. The di¤erence between these two measures

can be quite substantial.
15A web site (www.oakland.edu/enp/) maintained by Jerry Grossman, Patrick Ion, and Rodrigo de Castro

provides a part of that graph. There are similar networks that have been mapped out for other relationships,

such as the Kevin Bacon network (see the web site at the computer science department at the University of

Virginia, www.cs.virginia.edu/oracle/), where a link indicates that two actors appeared in the same movie.
16As these networks are not connected (there are many isolated authors), the �gures for average path length

and diameter are reported for the largest component.
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Table 1: Co-Authorship Networks

Biology Economics Math Physics

number of nodes 1520521 81217 253339 52909

avg. degree 15.5 1.7 3.9 9.3

avg. path length 4.9 9.5 7.6 6.2

diameter 24 29 27 20

clustering .09 .16 .15 .45

% size largest component .92 .41 .82 .85

substantially smaller than the number of nodes in the network. This is an aspect of the

�small-world�nature of social networks that I shall also discuss shortly.

The degree is the most basic characteristic of a node - it represents the number of links

that each node has. The average degree varies greatly across these �elds. However, we need

to be careful in comparing the degrees across studies, as the studies compute total number of

co-authors over a period of time, and the time periods di¤er across studies. Also, the number

of co-authors per paper varies dramatically across �elds. For instance, in the economics data

set, there are on average 1.6 authors per paper (and only 12 percent have more than two

authors), while in biology there are on average 3.8 authors per paper. Papers also di¤er

greatly in length across �elds leading to di¤erent numbers of papers and hence collaborators

per unit of time.

A more interesting comparison of degrees is across nodes within a given network. There

tends to be a wide range of degrees across nodes. We can get some impression by examining

the full distribution of node degrees. Figure 2 provides a log-log plot of the distribution of

degrees from the economics co-authorship data from Goyal, van der Leij, Moraga-Gonzalez

(2003).
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Figure 2: Comparison of the Degree Distributions of a Co-Authorship Network and a

(Bernoulli) Random Graph with the same Average Degree

The degrees of economists in the data set range from 0 to over 50. The distribution also

has an interesting shape. It clearly exhibits some curvature. However it also shows �less�

curvature than the distribution of degrees generated from a network with the same number

of links, but where the links are chosen uniformly at random (termed a Bernoulli random

graph, discussed below). What this indicates is that there are more economists with very

high degree and more with very low degree than we would see in a network where links were

generated uniformly at random. This �fat-tailed�property is one that I discuss in more detail

below.

2.3 The Prevalence of Network Interactions

While the examples in the previous section give us an idea of the variety of networks that have

been studied, it is also important for us to have an idea of what role networks might play in

a society and how they might in�uence economic outcomes. The most obvious and perhaps

pervasive role of networks is as a conduit of information, and one of the most extensively

documented role for social networks in economics is that of contacts in labor markets.17

The magnitude of use of social contacts as a method of matching workers and �rms can

be seen from various studies. One of the earliest studies, Myers and Shultz (1951), was

17For a recent comprehensive overview of research on networks in labor markets see Ioannides and Loury

(2004).
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based on interviews with textile workers and found that 62 percent had found their �rst job

through a social contact, in contrast with only 23 percent who applied by direct application,

and the remaining 15 percent who found their job through an agency, ads, etc. A study

by Rees and Shultz (1970) showed that these numbers were not peculiar to textile workers,

but applied very broadly. For instance, the percentage of those interviewed who found their

jobs through the use of social contacts as a function of their profession was: typist - 37.3

percent, accountant - 23.5 percent, material handler - 73.8 percent, janitor - 65.5 percent,

and electrician - 57.4 percent. Moreover, the prevalent use of social contacts in �nding jobs

is robust across race and gender (See Corcoran, Datcher, and Duncan (1980)) and across

country (see Pellizzari (2004)).

The role of social networks is not unique to labor markets, but has been documented

much more extensively. For example, networks and social interactions play a role in crime,18

in trade,19 social insurance,20, as well as disease transmission, language and culture, and

interactions of �rms.

2.4 Some Basic Characteristics of Social Networks

Beyond the fact that social networks play a role in many interactions, we also know a great

deal about some basic characteristics of social networks.

2.4.1 Small Worlds

One of the most in�uential studies of social networks was Stanley Milgram�s (1967) ingenious

�small-worlds� experiment. Milgram gave booklets with instructions to individuals in one

place (Nebraska, in the original experiment). The objective was to get the booklet to a geo-

graphically distant individual (on the east coast), where the sender is given some information

about the target (e.g., the person�s name, occupation, and where they live). The key was that

the subjects could only send the booklet to an acquaintance. The acquaintance could then

forward the letter to another acquaintance, with the same objective of having the booklet

eventually reach the target. The experiment collected information regarding the full chain

that the booklets followed, including demographic information about each of the acquain-

tances along the route. One remarkable statistic was that roughly a quarter of the booklets

18Reiss (1980, 1988) �nds that two thirds of criminals commit crimes with others, and Glaeser, Sacerdote

and Scheinkman (1996) �nd that social interaction is important in determining criminal activity, especially

with respect to petty crime, youth activity in crime, and in areas with less intact households.
19Uzzi (1996) �nds that relation speci�c knowledge is critical in the garment industry and that social

networks play a key role in that industry. Weisbuch, Kirman, Herreiner (2000) study repeated interactions in

the Marseille �sh market and discuss the importance of the network structure.
20Fafchamps and Lund (2003) show that social networks are critical to the understanding of risk-sharing in

rural Philippines, and De Weerdt (2002) provides similar analyses in Africa.
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reached their destination.21 Of the chains that were successful, the maximum number of

links that a booklet took was 12 and the median was 5! Given that these would generally

not have taken the shortest routes from initial sender to target (as the senders are often not

fully aware of the most e¢ cient path to the target), these numbers were quite striking. Since

Milgram�s initial experiment, this sort of study has been widely replicated and extended,

�nding similarly short paths and many other interesting facts about the sorts of paths that

are followed and the strategies that senders employ to �nd a shortest route.22

A simple back-of-the-envelope calculation gives some insight into this. If most individu-

als in the world have hundreds of acquaintances, then starting from a given individual, the

network size (in terms of number of individuals reached) will expand by a factor on the order

of a hundred raised to the power of the path length. It will not take very long paths until

the network is the size of the whole world�s population. If the network were a tree,23 simple

variations on this method would allow us to calculate average path lengths in a network quite

easily. However, most social networks are not trees and so to do a proper calculation, one

needs to account for overlap in neighborhoods. Since the percentage of paths which are reach-

ing new individuals decreases (nonlinearly) with the path length, precise average path-length

calculations can be very di¢ cult even in fairly easily described networks.24 Nonetheless, this

gives us a feeling for why the diameter of a social network will tend to be much smaller than

the number of nodes.

Milgram�s �nding of a short average path length is echoed in studies of a variety of

networks. Many social networks tend to have small diameter and small average path length,

where small is on the order of the log of the number of nodes or less.25 We saw this in the

co-authorship networks above. We see this in a network studied by Watts and Strogatz [363],

who report a mean distance 3.7 in a network among actors where a link indicates that two

actors have been in a movie together. A particularly striking example is that of the World

Wide Web. Adamic (1999) reports on a data set collected by Pitkow who �nds a mean path

length of 3.1 in a network of links among 50 million web pages.

2.4.2 �High�Clustering

While it is interesting that social networks exhibit small diameter and average path length,

it is also important to note that the same is true of many other networks, including routing

21Given that twenty to thirty percent is a healthy response rate on a survey, and that having a booklet

reach a destination required a chain of subjects to each respond, a twenty �ve percent rate of reaching the

target is impressive, especially in an unpaid experiment.
22For example, see Gar�eld (1979), Kochen (1989), and Dodds, Muhamad, and Watts (2003).
23A tree is a network without any cycles, where a cycle is a path consisting of distinct links that start and

end at the same node.
24For example, see Bollabás (2001) for some theorems bounding diameters in some classes of random graphs.
25This stylized fact is captured in the famous �six degrees of separation�of John Gaure�s play.
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networks, power grids, and networks of neurons.26 What tends to be a more distinguishing

feature of social networks, is their clustering (recall the de�nition above). Clustering is a

simple, but powerful concept that has roots tracing back to work of Simmel (1908), who

�rst explored triads (relationships between triples of individuals). Social networks tend to

have signi�cantly higher clustering coe¢ cients than what would emerge if the links were

generated by an independent random process. For example, Adamic (1999) �nds a clustering

coe¢ cient of .11 for a portion of the www, which would compare with an expected clustering

coe¢ cient of .0002 for a (Bernoulli) randomly generated network with the same number of

links. Figures for other networks are reported in Table 2 below, where we also see relatively

high numbers compared to a benchmark random network. For example, if each link is formed

with equal probability and independently of each other link, then the probability of two of

node i�s neighbors being connected to each other is simply the probability with which links

are formed. In the �rst column of Table 2, this would be less than 5/325000, as each node

has an average of fewer than 5 links out of a potential number that is more than 325000. The

observed clustering of .11 is substantially higher.

2.4.3 Degree Distributions

As discussed in the co-authorship example above, another easily identi�ed property of a social

network is its degree distribution. This gives some idea of the variation in the number of links

across di¤erent nodes, and provides us with some feeling for the shape of a network. Does

it have �hub and spoke�like features where there are some very highly connected nodes and

others with very few connections, or are connections more evenly distributed? Keeping track

of the distribution of degrees in a network can be quite useful. For example, the degrees of

the nodes in the Medici marriage network in Figure 1 are 0,1,1,1,1,2,3,3,3,3,3,3,4,4,6. From

this we see that the Medici had more than twice the average degree (6 compared to 2.53) and

twice the median degree.

One of the early studies documenting degree distributions was by Price (1965) who exam-

ined networks of citations among research articles. Price noticed a similar pattern to what

we noted in the co-authorship example above, namely that there were more highly connected

and lowly connected nodes than what would be expected if links were selected independently

and uniformly at random. Much of the recent interest in networks by statistical physicists

was sparked by a similar study of Albert, Jeong and Barabasi (1999), which examined the

structure of a portion of the www (in the Notre Dame domain). They also found a degree

distribution that was distinctly di¤erent from what would have been generated by a random

process of link formation where all links were equally likely. If links were formed uniformly

at random with a link between any two nodes being formed independently of other links

26For instance, see Watts (1999) and Newman (2003).
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and with a probability p, then the degree distribution would approximate a binomial distri-

bution, and would also be well-approximated by a Poisson distribution (see Section 3.1.1).

Again, they found that the degree distribution had �fat tails,�in that there were many more

nodes with very high and very low degree than would correspond to a binomial or Poisson

distribution. In fact, they estimated that the distribution was approximately �scale-free�

and followed a �power-law,�where the relative frequency of nodes with a degree of k is pro-

portional to k�
 for a parameter 
 > 1.27 The term �power law�clearly refers to the fact

that the frequency can be expressed as the degree raised to a power. The term �scale-free�

refers to the following property. Consider degree k and some other degree ck, for some scalar

c. Their relative frequencies are k�
=(ck�
 or c
 . Now consider some other degree k0 and

another degree ck0. Their relative frequencies are also c
 . Thus, regardless of how we have

rescaled things, relative frequencies depend only on relative sizes and not on the absolute

scale.

An important caution to the literature is in order here. While it is clear that the degree

distributions of many observed networks di¤er signi�cantly from that of a purely random

network; it is not clear that they are �scale-free�. This is a point �rst made by Pennock et

al (2002).28 A standard approach to outlining the degree distribution of many networks has

been simply to plot the log(frequency) versus the log(degree) and see whether this �looks�

linear. Of course, many things that are far from linear will appear linear on a log-log plot, as

most of the data are squeezed into a small portion of the scale on a log-log plot; and such a

distribution can be very di¢ cult to distinguish from others, such as a lognormal distribution

which can also appear quite linear. Simply �tting a line to the data on a log-log scale does

not guarantee that the estimated coe¢ cient means much of anything.

To get a better feeling for the shape of degree distributions, and whether most social

networks exhibit features that are close to scale-free, it is possible to consider families of

distributions and see which one best �ts a given social network. By doing this across dif-

ferent observed social networks, we can get a more precise sense of what the actual degree

distributions of the networks are. We can do this with a family of degree distributions that

have at one extreme networks whose links are generated uniformly at random, and at the

other extreme networks with scale-free distributions. Let us consider a recent study that

provides such �ts and shows that there are broad di¤erences in the degree distributions of

various social networks, and also that some networks that appear to be scale-free in a simple

plot are actually better �t by degree distributions that are markedly not scale-free.

27Such distributions date to Pareto [?], after whom they are named, and have appeared in a wide variety

of settings ranging from income distributions, distribution of city populations, to the usage of words in a

language. For an informative overview, see Mitzenmacher [260].
28See Eeckhout (2004) for a similar point regarding Zipf�s law as applied tocity sizes, and also Ioannides

(2004) for a similar point.
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Jackson and Rogers (2004) examine a family of degree distributions where the probability

that a given node has degree k is given by P (k) = c(k + rm)�(2+r), where c is a constant

(ensuring a sum to 1 across k�s), m is the average degree, and r is a parameter which varies

between 0 and 1. More speci�cally, the model is one where new nodes are born over time
and can attach to existing nodes either by choosing one uniformly at random or through a

search process that makes the likelihood of meeting a given node proportional to the number

of links the node already has. r represents the ratio of how many links are formed uniformly

at random compared to how many are formed proportionally to the number of links existing

nodes already have. As r approaches 0, the distribution converges to be scale-free, while as

m tends to in�nity the distribution converges to a negative exponential distribution, which

corresponds to the degree distribution of a purely uniform and independent link formation

process on a network that grows over time.

Using this model, we can back out the relative randomness in the formation process. Fits

to a few networks29 give us an idea of the variation across applications.30

Table 2: Comparisons Across Applications

WWW Citations Co-author Ham Radio Prison High School

Romance

Number of Nodes 325729 396 81217 44 67 572

Randomness: r 0.5 0.62 3.5 5.0 590 1000

Avg. Degree: m 4.5 5 1.7 3.5 2.7 .84

Avg. Clustering .11 .07 .16 .06 .001 0

29The www data are from an analysis of the links between web pages on the Notre Dame domain of the

world wide web from Albert, Jeong, and Barabási [4]. The co-authorship data are from the above cited study

by Goyal, van der Leij, and Moraga-González [172]. The citation network consists of the network of citations

among all papers that have cited Milgram�s (1967) paper or have the phrase �small worlds� in the title, and

is from Gar�eld [155]. The prison data record friendships among inmates in a study by MacRae [247], the

ham radio data record interactions between ham radio operators from Killworth and Bernard [221], and the

high school romance data collected romantic relationships between high school students over a period of a

year and a half in a US high school and is from Bearman, Moody, and Stovel [28]. The number of nodes,

average degree, and clustering numbers are as reported by the studies. The estimates on randomness are from

Jackson and Rogers (2004). The �ts on these estimated r�s are remarkably high, with R2�s ranging between

93 and 99 percent.
30The clustering �gure for the co-author data is actually for total clustering, as the average number is not

available but is likely to be higher given that the clustering is decreasing in degree. The clustering for the

high school romance network is special because that network is mainly heterosexual in its relationships, and

so completed triads do not appear. Even if one looks for larger cycles, there are only �ve present in the whole

network, which would be characteristic of a large network formed at random among two groups.
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Thus, we see a marked di¤erence in the degree distributions, as well as clustering and

average degree, across di¤erent social networks. As these characteristics are the more easily

measured features of a social network, and carry a great deal of information about the shape

of the network, they are quite useful. As we shall see below, it is also important to note how

di¤erent the degree distributions are across di¤erent social networks, since we can relate the

di¤erences in structure to di¤erences in resulting behavior on the networks.

There are many other features of social networks that have been explored, but are beyond

our scope here, as some of the basic features discussed above shall already give us a good

handle on some of the models that I discuss below.

With a better feeling for what social networks are, and some features that they exhibit,

and some basic statistics that help to describe networks, let us now return to the research

questions that are a focus of many of the models of networks. As I said in the introduction,

my focus here is on two central issues. How networks are formed and how network structure

a¤ects the behavior of the individuals involved in the network. I turn to these in order.

3 Modeling Network Formation

As mentioned in the introduction, the models of network formation have come primarily from

two sources: the random graph literature (and the subsequent statistical physics literature)

and the economics literature (building on game theoretic tools).

Let me emphasize from the outset how di¤erent these approaches have been. The random-

graph-based literature builds networks either through a purely stochastic process where links

appear at random according to some distribution, or else through some algorithm for building

links. What this allows one to do, is show how observed networks at some given point in

time might have resulted from some stochastic or mechanical process. Although this does

not quite answer the why behind network formation, it does give us a great deal of insight

into the how. That is, these sorts of models essentially match observed characteristics back

to speci�c processes. Why one process operates in one setting, and another in a di¤erent

setting is something essentially beyond the scope of the models.

The economic approach, in contrast, has tended to focus on equilibrium networks,31 where

links are formed at the discretion of self-interested agents who are or control the nodes. A big

advantage of this approach is that it naturally incorporates the costs and bene�ts into the

analysis, as the payo¤s to agents are part of the model. This enables one to answer questions

relating to whether or not the right networks form, in the sense of maximizing the total

bene�t to society. Such models also give us insight into the why behind network formation,

31 It has also provided some stochastic models of network formation, but mainly as a tool for selection among

equilibrium networks. For example, see Jackson and Watts (2002ab) and Goyal and Vega-Redondo (2005).
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as they trace network form to the incentives of the agents and the costs and bene�ts of

di¤erent links. The main shortcoming of these models is that while they can tell us things

about tensions between incentives and e¢ ciency, and trace incentives to primitives relating

to costs and bene�ts, they generally stop short of giving predictions concerning things like

which degree distribution should emerge. In a sense, they have not been as well-suited for

answering the how questions.

I return to more discussion of this in what follows.

3.1 Random Models of Network Formation

3.1.1 Erdös-Rényi (Bernoulli) Random Graphs

The earliest and most extensively studied formal model of network formation is that of purely

random graphs, with the canonical example being that of a pure Bernoulli process of link

formation. That is, consider a set of nodes and then independently consider each possible

link. With probability p have this link be part of the graph, and with probability 1� p have
that link be absent from the graph. This random graph formation process was explored in

detail by Erdös and Rényi (1959, 1960, 1961) and has been studied extensively since then.32 ;33

Figure 3 pictures a network generated through such a procedure, where there are 25 nodes

and a probability p = 1=6, which will be useful for comparison later on.34

There are a number of interesting properties that such Bernoulli networks have.35 These

properties are generally established for large networks; that is, as the number of nodes tends

to in�nity.

Let us �rst consider the degree distribution. The probability that any given node i has

exactly k links is simply  
n� 1
k

!
pk(1� p)n�1�k: (1)

Note that even though links are formed independently, if we want to estimate the fraction

of nodes in a network that will have a given degree, there will be some correlation across

nodes. For instance, if n = 2, then it must be that both nodes have the same degree. As

n becomes large, however, the correlation of degree between any two nodes vanishes, as the

possible link between them is only one out of the n � 1 that each might have. Thus, as n
32Another closely related random graph model is one where all graphs with n nodes and exactlyM edges are

considered, and one is randomly selected (where equal probability is placed on each such graph). If M = np

and n is large, then many of the properties of the resulting graph are similar to those of the Bernoulli graph

process.
33See Bollobás (2001) for an extensive overview.
34Despite the expected degree of 4, this realized network has an average degree of only 3.28, which puts in

the tail of possible networks with respect to average degree.
35Again, see Bollobás (2001) for a detailed account of these properties.
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Figure 3: A Bernoulli Random Graph

becomes large, the fraction of nodes that have k links will approach the expression in (1).

For large n and small enough p (relative to n), this binomial expression is approximated by

a Poisson distribution, so that the fraction of nodes that have k links is approximately36

e�(n�1)p((n� 1)p)k
k!

: (2)

This gives us a benchmark degree distribution for comparison.

Interestingly, the random graph generating process exhibits also a number of �phase�

transitions as we vary the probability of forming links, p, relative to the number of nodes, n.

When p is small relative to n, so that p < 1=n (average degree is less than one), then

the resulting graph consists of a number of disjoint and relatively small components, each of

which has a tree-like structure.

Once p is large enough relative to n, so that p > 1=n, then we see a �giant component�

emerge. That is, almost surely the graph consists of one large component, which contains a

nontrivial fraction of the nodes, and all other components are vanishingly small. To get some

impression as to the size of the giant component, and why it emerges at the juncture where

p = 1=n, let us do a simple (heuristic) calculation. Let q be the fraction of nodes in the giant

36To see this, simply note that for large n relative to k and small p, (1 � p)n�1�k is roughly (1 � p)n�1,

which is approximately e�(n�1)p. Then for �xed k and large n,

 
n� 1
k

!
is roughly (n�1)k

k!
.
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component. The probability that a node i is not in the giant component is the probability

that none of its neighbors are. If node i has degree ki, then this probability is (1 � q)ki .
Given the approximation by a Poisson degree distribution, the fraction of nodes outside of

the giant component would satisfy the equation

1� q =
X
k

e�(n�1)p((n� 1)p)k
k!

(1� q)k:

Since
P
k
((n�1)p(1�q))k

k! = e(n�1)p(1�q), we end up with an approximation of

q = 1� e�q(n�1)p: (3)

There is always a solution of q = 0 to this equation. In the case where the average degree

is larger than 1 (i.e., (n � 1)p > 1), and only then, there is also a solution for q that lies

between 0 and 1. This corresponds to the phase transition I mentioned above. If average

degree exceeds one, then there is a giant component which contains a non-trivial fraction of

all nodes, and the size of the giant component is approximately described by the nonzero

solution to (3)). For instance, in Figure 3 the giant component contains q = 24=25 = :96

of the total nodes. Solving q = 1 � eq(n�1)p when n � 1 = 24 and p = 1=6 leads to an

approximate q of :98.

Why we see just one giant component and all other components are of a much smaller

order is fairly intuitive.37 In order to have two �large�components each having some nontrival

fraction of n nodes, there would have to be no links between any node in one of the components

and any node in the other. For large n, it becomes increasingly unlikely to have two large

components but with absolutely no links between them. Thus, nontrivial components mesh

into a giant component, and any other components must be of a much smaller order. Although

not an entirely random network (see Table 2), we get an impression of this from the economics

co-authorship network of Goyal, van der Leij and Moraga-Gonzalez (2003): it has a total of

81217 nodes and a giant component of 33027 nodes, and yet the second largest component

only consists of 30 nodes.

As we continue to increase p, we see another phase transition when p is proportional to

log(n)=n. This is the threshold at which the network becomes �connected�so that all nodes

are path-connected to each other. We again get some impression of why this is happening

from our approximation of the size of the largest component in (3). When we plug in p =

log(n)=(n � 1) then q solves q = 1 � n�q, which for large n gives q close to 1. The more
formal analysis is quite involved and is detailed in Bollobás (2001). Once we hit the threshold

at which the network becomes connected, we also see further changes in the diameter of the

network as we continue to increase p relative to n. Below the threshold, the diameter of

37For precise bounds on sizes see Bollobás (2001).
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giant component is of the order of log(n), then at the threshold of connectedness it hits

log(n)=loglog(n), and it continues to shrink as p increases.

One interesting characteristic of Bernoulli random graphs, is that for large n and p that

is not too large, we see very little clustering. That is, if two links, say ij and jk, are both

present and then ask with what probability ik is present, the answer is simply p. So, if p

is relatively small, then so is clustering. In particular, if we examine large social networks,

where p should be close to 0, then the clustering of a network goes to 0. Having p be close

to 0 when n is large would be necessary if, for instance, there is some upper bound on the

average degree. This is something we expect in many social networks as there is some bound

on the number of links an individual can maintain. In fact, if p is small enough and n is large

enough, it is not only that we expect low clustering, but in fact we do not expect any loops

or cycles in the network; that is, with high probability all components of the network will be

trees (see Bollobas (2001) for details).

While this is just a quick look at some of what is known about Bernoulli (Erdös-Rényi)

random graphs, it gives us some feeling for some properties of purely random networks.

This is useful since such Bernoulli random graphs provide a relatively good match for some

observed networks (e.g., the prison friendships and high school romance networks38 reported

in Table 2), and also because some of the types of phase transitions and features observed

in these networks are also observed in other random network models. However, although the

Bernoulli random graphs studied by Erdös and Rényi and others provide a useful benchmark

model for social networks and �t in a few cases, their lack of clustering, among other things

means that they lack some basic features exhibited by many observed social networks. This

has led researchers to explore other sorts of random network models.

3.1.2 Markov Graphs and p� networks

There are various generalizations of Bernoulli random graphs that have been useful in sta-

tistical analysis of observed networks. In particular, Frank and Strauss (1986) identi�ed a

class of random graphs that generalize Bernoulli random graphs, which they called �Markov

graphs�. Such random graph models were later introduced to the social networks literature

by Wasserman and Pattison (1996) under the name of p� networks, and further studied and

extended in various directions.39 The basic idea is to allow for speci�c dependencies in a

network.
38Again, the high school romance network is mainly bipartite in nature and so would be best modeled through

a modi�ed random model where links only form across gender, but still exhibits remarkable randomness in

the structuring of its links.
39For instance, see Pattison and Wasserman (1999) for an extension to multiple interdependent networks

on a common set of nodes.
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To get some feeling for the importance of introducing dependencies, let us consider the

clustering discussed above. As just discussed, with a relatively low probability of any given

link being present, if all links are independently determined, then the clustering ratio will

tend to be low, and too low to match many observed networks. However, suppose that one

allows for conditional dependencies, so that the conditional probability of a link ik depends on

whether ij and jk are present. In general, it can be quite di¢ cult to see how to introduce such

dependencies, as they will tend to interact with each other which could make it impossible

to specify the probability of di¤erent graphs in a tractable manner. For instance, if the

conditional probability of a link ik depends on whether ij and jk are present, but also on

any other adjacent pairs being present, and the conditional probability of jk depends on

other adjacent pairs being present, etc.; we end up with a complicated set of dependencies.

The important contribution of Frank and Strauss (1986) is to make use of a theorem by

Hammersley and Cli¤ord (see Besag (1974)) to derive a simple log-linear expression for the

probability of any given network in the presence of arbitrary dependencies.

One particularly useful result of Frank and Strauss (1986) can be expressed as follows.

Consider a random network on n nodes. Let us keep track of the dependencies between links

by another graph, D, that is a graph among all of the n(n� 1)=2 possible links (or n(n� 1)
possible directed links if the network is directed). So, D is not a graph on the original

nodes, but a graph whose nodes are all the possible links. The idea is that if ij and jk are

connected in D, then there is some sort of conditional dependency between them, possibly in

combination with other links. Thus, D captures which links are dependent on which others,

possibly in quite complicated combinations. For example, the Bernoulli model is one where

D is empty, as all links are independent. If instead, we wish to capture the idea that there

might be clustering, then we would like the link ik to depend on the presence of ij and kj

for each possible j. Thus, D would have ik connected to each other link that contains either

i or k.

Let C(D) be all the cliques of D; that is, all of the completely connected subgraphs of

D (where the singleton nodes are considered connected subgraphs). So, in the case of a

Bernoulli random graph C(D) would simply be the set of all links ij. In the case of the

clustering dependence just mentioned above, the set C(D) would include all individual links

and also all of the triads (sets of the form fij; jk; ikg). Given a generic element A 2 C(D),
let IA(g) = 1 if A � g (viewing g as a set of links), and IA(g) = 0 otherwise. So, if A is a

triad fij; jk; ikg, then IA(g) = 1 if each of the links ij, jk and ik are in g, and IA(g) = 0

otherwise. Then, Frank and Strauss show that Hammersley and Cli¤ord�s theorem implies

that the probability of a given network g depends only on which cliques of D that it contains,
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and that it can be written as

log(Pr[g]) =
X

A2C(D)
�AIA(g)� c; (4)

where c is a normalizing constant, and the �A�s are other free parameters.

In general, given that D can be very rich and that the �A�s can be chosen at will, this

allows for an almost arbitrary probability speci�cation. The di¢ culty, and art, in applying

this type of model in practice is in specifying the dependencies sparingly and some restrictions

on the �A�s so that the resulting probabilities are simple and practical. For some certain

kinds of dependencies, the expressions can be quite simple and useful (e.g., see Anderson,

Wasserman and Crouch (1998)).

To see how the expressions can simplify, let us consider the clustering dependency we

mentioned above. This means that C(D) is just the set of all links and all triads (triplets of

the form fij; jk; ikg). To simplify things further, let us also suppose that there is a symmetry
among nodes, so that the probability of any two networks that have the same architecture

but possibly di¤erent labels on the nodes is identical. This means that the �A�s are the same

across all A�s that correspond to single links, and the same across all A�s that correspond to

triads. Thus, the expression in 4 simpli�es substantially. Let n1(g) be the total number of

links in g, and let n3(g) be the total number of completed triads in g. Then there exist �1,

�3 and c such that (4) becomes

log(Pr[g]) = �1n1(g) + �3n3(g)� c:

This then provides us with a simple generalization of Bernoulli random graphs (which are

the special case where �3 = 0), which will allow us to control the frequency of clusters. That

is, we can adjust the parameters so that graphs that have more substantial clustering will be

relatively more likely than graphs that have less clustering (for instance, by increasing �3).40

While such a model can be cumbersome as we try to capture more complicated depen-

dencies, it still provides a powerful statistical tool for testing for the presence of some speci�c

dependency. One can test for signi�cant di¤erences between �ts of a model where such

dependencies are present and a model where such dependencies are absent.41

3.1.3 Rewired Lattices and Clustering

Watts and Strogatz (1998) looked at another variation on a Bernoulli network, with a par-

ticular question in mind. They wanted to generate networks that exhibit both relatively low

diameter and nondegenerate clustering. They developed a model that mixes purely random
40See Park and Newman (2004) for some derivations of clustering probabilities for this example.
41Obviously, the validity of the test depends on the appropriateness of the rest of the speci�cation of the

model which can be a problem in practice.
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link formation with a lattice structure. The structure of their model is easy to understand.

I will discuss a particular example, and refer the reader to Watts (1999) for more detailed

derivations and simulations of the model.42

Suppose we start with a very structured network that exhibits a high degree of clustering.

For instance, let us construct a large circle, but then connect a given node to the nearest four

nodes rather than just its nearest two neighbors.

Figure 4: A Ring Lattice with Randomly Added Links

In such a network, each node�s individual clustering coe¢ cient will be 1=2. To see this,

consider some set of consecutive nodes 1, 2, 3, 4, 5, that are part of such a network for a large

n. Consider node 3, which is connected to each of the other nodes. Out of all the pairs of 3�s

neighbors (f1; 2g; f1; 4g; f1; 5g; f2; 4g; f2; 5g; f4; 5g), we see that half of them are connected

(f1; 2g; f2; 4g; f4; 5g)
Note, however, that the diameter of such a network is on the order of n=4, which is out

of line with what we observed in Table 1 and Section 2.4.1, where the diameter was on the

order of 20 for networks with hundreds of thousands of nodes. The main point of Watts

and Strogatz (1998) is that by starting with such a highly clustered ring lattice, and then

randomly rewiring enough (but not too many) links, we can end up with a network that

has a much smaller diameter but still has substantial clustering. The rewiring can be done

by randomly selecting some link ij and disconnecting it and then randomly connecting i to

42See also Barrat and Weight (2000).
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another node k chosen uniformly at random from those whom i is not already connected

to. Of course, eventually if too much rewiring is done, the clustering will vanish.43 The

interesting region is where enough rewiring has been done to substantially reduce (average

and maximal) path length, but not so much that clustering vanishes. The key to this process

is that the short cuts introduced by relatively few rewirings can dramatically decrease path

lengths, and that this is a nonlinear relationship.

A slight variation of this original model proposed by Newman and Watts (1999) (see also

Monasson (1999)) is easier to analyze in terms of its properties. That model starts with the

same sort of ring lattice structure, but instead of rewiring links randomly, it simply adds links

randomly. While precise diameter and path length numbers have still not been obtained for

this model, we can easily derive upper bounds based on those for the corresponding random

graphs, and in terms of diameter these bounds should not be too far o¤ (at least when the

corresponding random graph, ignoring the ring lattice, would be connected by itself). For

instance if we introduce more than log(n)=n random links, then we can expect a diameter of

no more than log(n)=loglog(n) (given what is known about Bernoulli random graphs).

While the rewiring of a ring lattice provides the high clustering and low path lengths that

we observe in many social networks, the resulting degree distributions are far from what is

observed. In particular, in order to keep a reasonably high clustering coe¢ cient in such a

model, the initial ring lattice structure has to stay largely intact and has to represent a non-

trivial fraction of an average nodes links. This means that the resulting degree distribution

has a great deal more regularity and less variance than what is generally observed.

3.1.4 Preferential Attachment and Scale-Free Degree Distributions

As mentioned above, in order to match the degree distributions that are observed in many

social networks, one needs a process of link formation that di¤ers from the pure Bernoulli

(Erdös-Rényi) process, as observed distributions often exhibit fatter tails.

The ideas behind generating distributions with such �fat tails� date to Pareto (1896),

for which the standard power distribution is named, and continued in Yule (1925) and were

really crystallized and formalized by Simon (1955). The underlying principle is what is often

referred to as a �rich-get-richer� structure, or essentially something akin to a lognormal

growth system. If objects grow in size at a rate proportional to their current size, then

we should expect �fat tails� in the distribution of sizes. In particular, Simon pointed out

that in a system where objects are born at di¤erent times, and then grow lognormally once

they are born, the resulting distribution of object size will follow a power-law or scale-free

43That is, the network will take on the features of a random network, which has vanishing clustering as the

number of nodes becomes large and the number of links per node is not growing too rapidly.
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distribution.44 This can be applied to distributions of wealth and city sizes, among many

other things.45

Price (1965) �rst observed that some networks (in particular, citation networks) had

degree distributions with special features. In a later seminal paper, Price (1976) adapted

Simon�s (1955) ideas to the setting of a growing (citation) network in order to generate scale-

free degree distributions. The idea was that the number of citations that papers would gain

over time were proportional to the number of citations they already had.46 In the recent

literature, such a process has been referred to by the name of �preferential attachment,�as

coined by Barabasi and Albert (2001), who developed a model similar to Price�s (1976) model

except it is undirected, while Price�s was directed.47

Let me brie�y describe such a model, as it is useful in illustrating some of the techniques

from that literature. Consider a system where a new node is born at each date. So let us

index nodes by their date of birth i 2 f0; 1; 2:::; t; :::g. Upon birth (and only then), each new
node forms m links with pre-existing nodes.48 The new node selects the nodes to link to in

a random manner, but with a probability that is proportional to the number of links that

each given node already has. For example, if an existing node i has twice as many links as

some other node j, then it is twice as likely to get a given link from the newborn node. So,

roughly, the probability that any given existing node i gets a new link at time t is m times its

degree relative to the overall degree of all existing nodes that time t, or m ki(t)Pt
j=1 kj(t)

, where

ki(t) is node i�s degree at time t and
Pt
j=1 kj(t) is the normalization by the total degree of

all nodes. As there are tm total links in the system at time t,
Pt
j=1 kj(t) = 2tm. Thus, the

44Another explanation behind power laws is the idea of �HOT�(highly optimized tolerance) systems that

underlies Carlson and Doyle [77] and Fabrikant, Koutsoupias, and Papadimitriou [124]. That important idea

addresses systems that are centrally optimized, rather than self-organizing.
45See Mitzenmacher (2004) for a nice overview.
46One can explain such a system via a simple process. If researchers randomly �nd a paper (which these

days can be explained via a key-word search) and then search for additional papers via the references they

�nd in the �rst paper, then the chance of being found is roughly proportional to the number of citations that

a paper already has.
47See Newman (2003) (and also Mitzenmacher (2004)) for more discussion of the various naming of such

processes and their development.
48There are some details to worry about in starting such a process. Early nodes may not end up being able

to form m links. If we count early nodes as having m links, regardless of how many they actually formed,

then the process is well-de�ned. Alternatively, one can start with some initial connected network of at least

m nodes already in place. Also, a node can form at most one link to any given other node. So, one can either

follow a convention of allowing a node to try to form more than one link with an existing node and then

treating more than one link between two nodes as just one link (or instead one could re-randomize whenever

a node tries to form a link with a node that it has already linked to). The network in Figure 5 was formed by

treating nodes 1 and 2 as if they had degree 2, and by allowing nodes to form multiple links to a single node,

but then counting them as just one link (for instance, note that node 3 only formed a link with node 2 and

not node 1).
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probability that any given existing node i gets a new link in period t is ki(t)2t .

This results in a well-de�ned stochastic process (an in�nite Markov chain). As such the

steady state distribution of a Markov process can be hard to solve for explicitly, the system

is often approximated. For instance, if we approximate the random discrete time system

by a continuous time system, where the degree of each node grows deterministically at the

expected rate, then we can solve it explicitly. This is termed a �mean-�eld�approximation.

So, in this system, given that a node i is expected to gain roughly ki(t)
2t links in period t,

the mean �eld approximation is to solve the system where

dki(t)

dt
=
ki(t)

2t
:

This di¤erential equation with initial condition ki(i) = m leads to a solution of

ki(t) = m

�
t

i

�1=2
:

Thus, nodes are born over time and then grow. The system is now much simpler than the

random system, in that the degrees of nodes can be ordered by their ages. The oldest nodes

are the largest. To �nd out what the fraction of nodes is that exceeds some given level k at

some time t, we just need to identify which node is at exactly level k at time t, and then we

know that all nodes born before then are the nodes that are larger. Let it(k) be the node

which has degree k at time t, or such that kit(k)(t) = k. From our above equation, we know

that
it(k)

t
=
�m
k

�2
:

The fraction of nodes that have degree smaller than k at time t are then the proportion born

after node it(k), or born after time t
�
m
k

�2. Thus, the distribution function is
Ft(k) = 1�m2k�2:

This has a corresponding density or frequency of49

f(k) = 2m2k�3:

Thus, we obtain a scale-free distribution with an exponent of -3.50

To get some feeling for such a network, and how it might di¤er from the previous random

graph models, consider the following �gure of a 25 node network which was generated using

such a preferential-attachment process where each new node forms two links.51

49Note that the expression for Ft is in fact independent of t (which is an artifact of the continuous time

mean-�eld approximation). Thus, the subscript is dropped from the expression.
50The speci�cs of the exponent -3, comes from the -2 in the distribution function, which is traced back to

the fact that each link is shared by a new and old node. If these were in di¤erent proportions, the exponent

would change. See Simon (1955) for more discussion of this, and Jackson and Rogers (2004) for an alternative

model with additional variation in the exponent.
51Node 1 formed no links at birth. Node 2 formed only a link to 1. And then the process was well de�ned
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Figure 5: A Network Formed by Preferential Attachment

The nodes are indexed by their birth dates, and we see that the older nodes tend to have

much higher degrees. For instance, node 2 has degree 11 while nodes 22 to 25 have only

degree 2, or the links they form at birth.52 This network looks very di¤erent from the earlier

models which had approximately the same average degree (Figures 3 and 4).

3.1.5 Hybrid Models

From the models we have discussed so far, we see that in each case there is some de�ciency.

The purely random graphs analyzed by Erdös and Rényi do not exhibit the clustering or

degree distributions that match many observed networks. The rewired ring lattices of Watts

and Strogatz (1998) do not exhibit degree distributions matching observed networks. Prefer-

ential attachment generates scale-free degree distributions that help account for the fat-tailed

degree distributions observed in many applications. However, it turns out that preferential

attachment generates networks that do not exhibit any clustering. Moreover, as we saw from

Table 2, degree distributions di¤er substantially across applications and tend to lie somewhere

from then on.
52 It is clear that many networks have degree distributions that are not so purely age dependent. By adding

a weighting parameter or ��tness,� it is easy to extend the model so that some younger nodes can overtake

older nodes because they are more attractive to link to (see Bianconi and Barabasi (2001)). In such a model

each node is born with a level of attractiveness, and the probability that they are attached to is proportional

to this level of attractiveness times the number of links they have, properly normalized.
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between purely random and purely scale-free.

Thus, in order to match observed networks, we need several characteristics: relatively low

diameter, nontrivial clustering, and a degree distribution that spans between purely random

and scale-free networks. Recent models have made progress in generating networks that

are closer to observed networks. Pennock et al (2002), show that by use of a mixed model

where some links are formed uniformly at random and others are formed via preferential

attachment results in a degree distribution that spans between random and scale-free degree

distributions. There are other models that are hybrids of random and preferential attachment

(e.g., Kleinberg et al (1999), Kumar et al (2000) , Dorogovtsev and Mendes (2001), Levene et

al (2002), and Cooper and Frieze (2003)). Interestingly, most of these ignore the fact that the

resulting degree distributions are not scale-free, but instead try to show that the distribution

is at least approximately scale-free for large degrees. Pennock et al (2002) were the �rst to

recognize the fact that many observed networks were not really scale-free, and thus that a

hybrid model could better match observed degree distributions. Unfortunately, that model

does not provide any clustering.

In order to generate clustering, and still have some sort of scale-free aspect to a degree

distribution, Klemm and Eguíluz (2002, 2002b) have a variation of the preferential attachment

model where nodes are declared either active or inactive. A new node enters as �active�

and then some existing active node is randomly de-activated (with a probability inversely

proportional to its degree). New nodes attach to each active node. Then with a probability

�, each of these links is rewired to a random node in the population chosen according to

preferential attachment. This process thus has a �xed number of �active� nodes, and the

fact that each entering node ends up hooked up to a proportion 1� � of them, and that the
list of active nodes only changes by one each period, results in signi�cant clustering. The

preferential attachment structure results in the scale-free distribution and small diameter.

However, this sort of model only generates scale-free distributions.

Jackson and Rogers (2004) show that a hybrid model can result in all of the features of

high clustering, small diameter, and a degree distribution that spans between purely random

to scale-free. In that model, nodes are born over time and each node forms m links, just

as in the preferential attachment model described above. However, instead of forming links

randomly, the new nodes meet (and form links to) some existing nodes purely at random and

then also meet some neighbors of these nodes.53 Meeting neighbors introduces an element of

preferential attachment, as the chance of meeting a node in that manner is proportional to

how many neighbors it has. As the ratio of how many nodes are met at random compared to

how many of their neighbors are met is varied, this process spans between one of completely

53See Vazquez (2003) for a related process which also exhibits clustering, where links are formed by �rst

entering at a randomly selected node and then following a path emanating from the node.
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random link formation to one of pure preferential attachment. However, it exhibits nontrivial

clustering between these extremes, since then a new nodes will often form a links both to

an existing node and one of its neighbors, thus forming a completed triangle. Jackson and

Rogers show that such a model can �t observed networks well on several dimensions at once

(see Table 2).

3.2 Strategic Models of Network Formation

As I have provided extensive discussion of strategic models of network formation elsewhere

(Jackson (2003, 2004)), here I will present a few examples to illustrate some key points about

the literature on network formation that has emerged from economics and game theory.

There are two key aspects of an economic/game theoretic approach to modeling network

formation:

(i) agents derive some utility from the network, and thus there is an overall societal welfare

corresponding to any network that might arise, and

(ii) links are formed at the discretion of the agents who are (or control) the nodes, and re-

sulting networks can be predicted through notions of equilibrium or possibly stochastic

dynamic processes.

While economists are so used to looking at costs and bene�ts and using utility based

models that (i) would be taken for granted; it is important to note that this perspective

on network analysis is a key distinguishing feature from the �random� models discussed

above. This is an important feature that allows one to assess the implications of various

networks or formation processes, to deduce whether �good� networks are emerging from

society�s perspective. Having utilities assigned to networks is, of course, also a prerequisite

for an equilibrium analysis, (ii), which complements the �random� processes and provides

di¤erent insights into network formation. Being able to evaluate the consequences of various

network structures is necessary in order to move the study of social networks beyond a purely

descriptive exercise, and having welfare measures and outcomes associated with di¤erent

networks is essential in this regard. Also when integrated with an equilibrium analysis, we

can analyze and understand the potential con�ict that arises between the networks emerging

through the choices of the parties involved and the networks that are best from a societal

perspective.

Another important point to emphasize, is that such a game theoretic perspective can help

answer the questions as to why certain network features might appear. I will discuss this a

bit more below, with respect to contrasting views of �small-worlds�phenomena. I will also

discuss the limitations of an economic/game theoretic approach, and the potential for hybrid
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approaches, which combine some randomness and heterogeneity with economic motivations

for link formation.

3.2.1 An Economic Approach

Some of the �rst models bringing explicit utilities and choice to the formation of social links,

were in the context of modeling the tradeo¤s between �strong� and �weak� ties in labor

contact networks. These models were by Boorman (1975) and Montgomery (1991), and

explored �ndings and hypotheses about di¤erent strengths of ties and their role in �nding

employment that were originally due to in�uential work by Granovetter (1974). Granovetter

had observed that when individuals obtained jobs through their social contacts, while they

sometimes did so through strong ties (people whom they knew well and interacted with on a

frequent basis), they also quite often obtained jobs through weak ties (acquaintances whom

they knew less well and/or interacted with relatively infrequently). This led Granovetter

to coin the phrase �the strength of weak ties.� There have been many studies that have

followed on Granovetter�s work, and many di¤erent explanations for such phenomena, as well

as more explicit distinctions between what constitutes a strong versus a weak tie in various

settings. Boorman�s article and Montgomery�s articles provided explicit models where costs

and bene�ts could be assigned to strong and weak ties, and tradeo¤s between them could be

explored.

From a completely separate perspective, another use of utility functions in a network

context emerged in the work of Myerson (1977). Myerson was originally interested in char-

acterizing a cooperative game theoretic solution concept, the Shapley value, without directly

imposing an additivity axiom. This led him to analyze a class of cooperative games54 that

were augmented with a graph structure. In particular, in these games the only coalitions that

could produce value are those that are pathwise connected within the underlying graph. He

thought of the graphs as indicating the possible cooperation or communication structures.

So, starting with some given cooperative game and then augmenting it with such a graph,

one ends up with a new cooperative game where the worth of any coalition is determined

by how it is partitioned by the graph.55 In that framework, a natural analog of the Shapley

54For those not familiar with cooperative games, a standard formulation speci�es a value or worth for every

possible set of players. A solution, such as the Shapley Value, then predicts or suggests how the total value of

the society as a whole (the �grand coalition�), should be split between its members and how that depends on

the values that are generated by all the possible subcoalitions. The reason that the information of the values

of subcoalitions is important, is that it provides information about how much di¤erent players contribute to

society as one can calculate, for instance, how much value would be lost if a given player were removed from

the society or from some given subcoalition.
55For example, considering a coalition 1,2,3 and a graph that just has a link between 1 and 2, means that

the coalition would generate value as if it were just 1,2 instead of 1,2,3 (normalizing isolated players to have

value of 0).
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value (now termed �The Myerson Value�) emerges and can be characterized with some simple

axioms. Aumann and Myerson (1988) then recognized that di¤erent graph structures led to

di¤erent allocations of value to the agents in the society, and so they studied a speci�c ex-

tensive form game where links are considered one-by-one according to some exogenous order,

and formed if both agents involved agree. While that game turns out to be hard to analyze

even in three-person examples, it was an important precursor to the more recent economic

literature on network formation.56

In contrast to the cooperative game setting, Jackson and Wolinsky (1996) explicitly con-

sidered networks, rather than coalitions, as the primitive. Thus rather than deducing utilities

indirectly through a cooperative game on a graph, they posited that networks were the prim-

itive structure and agents derived utilities based on the network structure in place. Once we

have utility being derived from networks, we can take a game theoretic approach to model-

ing network formation by modeling the formation of links via the decisions of self-interested

maximizing players.

As with any game theoretic setting, there are di¤erent approaches to modeling equilib-

rium. A standard equilibrium concept such as Nash equilibrium is not well suited to modeling

network formation, as the consent of two players is generally needed to form a link or re-

lationship.57 For example, if we simply consider a game where each agent announces the

links he wishes to form and we form links that are jointly announced, it is always a Nash

equilibrium to have no links form. Each player announces an empty set of links since he or

she (correctly) anticipates that all other players will do the same.

There are various ways around this, and a very simple one is to de�ne a simple stability

notion directly on networks. This was the approach followed by Jackson and Wolinsky (1996)

who de�ned the following notion of pairwise stability. A network is pairwise stable if no player

wants to sever a link and no two players both want to add a link.

More formally, let ui(g) denote the net utility that agent i receives under the network g,

inclusive of all costs and bene�ts.

A network g is pairwise stable if

(i) for all ij 2 g, ui(g) � ui(g � ij) and uj(g) � uj(g � ij), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).
56See Slikker and van den Nouweland (2001) for an overview of much of the cooperative game theoretic

literature that has followed on communication and cooperation structures based on networks.
57There are some exceptions. In some purely directed settings, it is possible to form a link without the

destination node�s consent - such as forming a link to a web page or citing a paper. In such cases, the issue of

mutual consent does not arise and a solutions such as Nash equilibrium and its re�nements can be used. See

Jackson (2004) for more discussion and references on such equilibrium modeling issues.
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The requirement that no player wishes to delete a link that he or she is involved in

implies that a player has the discretion to unilaterally terminate relationships that he or she

is involved in. The second part of the de�nition can be stated in various ways. In order for

a network to be pairwise stable, it is required that if some link is not in the network and one

of the involved players would bene�t from adding it, then it must be that the other player

would su¤er from the addition of the link. Another way to state this is that if we are at a

network g where the creation of some link would bene�t both players involved (with at least

one of them strictly bene�ting), then the network g is not stable, as it will be in the players�

interests to add the link.

While pairwise stability is natural and quite easy to work with, there are limitations of

the concept. For instance, it only considers deviations one link at a time, and by at most two

players at a time. This is a current area of research (see Section 5), but nonetheless pairwise

stability serves as a sensible starting point.

Given that we have well-de�ned payo¤s to players as a function of the network, there

are two obvious and standard notions of welfare that we can apply. The �rst is simply a

utilitarian principle, which is to say the �best�network is the one which maximizes the total

utility of the society. This notion was referred to as �strong e¢ ciency� by Jackson and

Wolinsky (1996), but I will simply refer to it as e¢ ciency.

Let v(g) =
P
i ui(g) be the total value that accrues to society as a function of a network

g. A network g is e¢ cient relative to v if v(g) � v(g0) for all g0 2 G(N).
It is clear that there will always exist at least one e¢ cient network, given that there are

only a �nite set of networks.

The other natural notion of e¢ ciency is that of Pareto e¢ ciency. A network g is Pareto

e¢ cient relative to (u1; : : : ; un) if there does not exist any g0 2 G such that ui(g0) � ui(g)

for all i with strict inequality for some i.

To understand the relationship between the two de�nitions, note that if g is e¢ cient

relative to v =
P
i ui then it is clearly Pareto e¢ cient relative to (u1; : : : ; un). The converse

is not true. What is true is that g is e¢ cient relative to v if and only if is Pareto e¢ cient

relative to all (bu1; : : : ; bun) such that Pi bui = v.
Thus, e¢ ciency is a stronger notion and is the more natural notion in situations where

there is some freedom to reallocate value through transfers. Pareto e¢ ciency is a less decisive

notion, often admitting many networks, but it might be more reasonable in contexts where

the payo¤ functions are �xed, and no transfers are possible.

3.2.2 The Connections Model

A simple model of social connections, from Jackson and Wolinsky (1996), is useful for illus-

trating the relationship between e¢ cient and pairwise stable networks.
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In the connections model, links represent social relationships between players (nodes);

for instance friendships. These relationships o¤er bene�ts in terms of favors, information,

etc., and also involve some costs. Moreover, players also bene�t from indirect relationships.

A �friend of a friend�also results in some indirect bene�ts, although of a lesser value than

the direct bene�ts that come from a �friend.� The same is true of �friends of a friend of a

friend,�and so forth. The bene�t deteriorates in the �distance�of the relationship. This is

represented by a factor �ij that lies between 0 and 1, which indicates the bene�t from a direct

relationship between i and j and is raised to higher powers for more distant relationships.

For instance, in the network where player 1 is linked to 2, 2 is linked to 3, and 3 is linked to

4; player 1 gets a bene�t of �12 from the direct connection with player 2, an indirect bene�t

of (�13)2 from the indirect connection with player 3, and an indirect bene�t of (�14)3 from the

indirect connection with player 4. For �ij < 1 this leads to a lower bene�t from an indirect

connection than a direct one. Players only pay costs, however, for maintaining their direct

relationships.

We can write the net utility or payo¤ ui(g) that player i receives from a network g as

ui(g) =
X

j 6=i: i and j are path�connected in g
(�ij)

pij(g) �
X

j 6=i: ij2g
cij ;

where pij(g) is the number of links in the shortest path between i and j and cij > 0 is the

cost for player i of maintaining a link with j.

To see how this works, let us consider the special case, termed the �symmetric connections

model,� where the cost and bene�t parameters are identical for all agents, so there exist

1 � � � 0 and c � 0 such that �ij = � and cij = c for all ij.
Then, for instance, we can easily deduce utilities in the network pictured in Figure 6.

Figure 6: An Example of Payo¤s in the (Symmetric) Connections Model

The highly stylized nature of the connections model allows us to begin to answer questions

regarding which networks are e¢ cient, or �best�from society�s point of view, as well as which

networks are likely to form when self-interested players choose their own links as modeled

through pairwise stability.
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Let us examine the e¢ cient networks. They are characterized as follows in the symmetric

connections model:

(i) the complete network if c < � � �2,

(ii) a star encompassing all nodes if � � �2 < c < � + (n�2)
2 �2, and

(iii) the empty network if � + (n�2)
2 �2 < c.

The intuition behind this is very clear. If costs are very low, (i), it will be e¢ cient to

include all links in the network. In particular, if c < � � �2, then adding a link between
any two agents i and j will always increase total welfare. This follows because they are each

getting at most �2 of value from any indirect connection between them, and since �2 < � � c
the value of a direct connection between them increases their utilities (and might also increase

the utilities of other agents). When the cost rises above this level, so that c > � � �2 but c
is not too high, it turns out that the unique e¢ cient network structure is to have all players

arranged in a �star� network. This can be seen from several observations, and a careful

proof is not much more complicated. The �rst observation is that a star network involves the

minimal number of links (n�1) needed to connect all individuals. The second is that in a star
network all nodes are within at most two links from one another. The third observation is

that when c > ���2, then a path of length two between two nodes generates more utility than
a path of length one. A star has the minimal number of links, and has all nodes at distances

of two or less, and the most possible at a distance of two out of all networks that connect

all individuals. It is also easy to check by direct calculations, that if a small star generates

positive total utility then a larger star generates more, and that a single star outperforms

separate stars. Thus, if it is e¢ cient to connect agents at all when c > �� �2, then we should
do it through a single star. The calculation in (iii) comes from checking whether or not the

utility of a star including all nodes is positive.

Thus, in the connections model the set of e¢ cient networks have a remarkably simple

characterization: either costs are so low that it makes sense to add all links, or are so high

that no links make sense, or costs are in a middle range and the unique e¢ cient architecture

is a star network.58

We can now compare the e¢ cient networks with those that arise if agents form links in a

self-interested manner. The pairwise stable networks are as follows.

(i) If c < � � �2, then the complete network is the unique pairwise stable network.
58This characterization of e¢ cient networks actually holds for a much broader set of environments. Essen-

tially in any situation where utility depends on minimal distances between nodes and there is some sort of

decay of value with distance and there are symmetries across agents, the same conclusions hold (see Bloch

and Jackson (2003)).
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(ii) If � � �2 < c < �, then a star encompassing all nodes is pairwise stable, and there are
also other pairwise stable networks.

(iii) If � < c < � + (n�2)
2 �2, then all pairwise stable networks are ine¢ cient, and are such

that each agent has either no links or at least two links.

(iv) If � + (n�2)
2 �2 < c, then the empty network is the unique pairwise stable network.

In the case where costs are very low c < � � �2, the direct bene�t to the agents from
adding or maintaining a link is positive, even if they are already indirectly connected. Thus,

in that case the unique pairwise stable network will be the e¢ cient or complete network.

When costs are very high, then no links form and again we have an e¢ cient outcome. The

more interesting cases in the middle ranges of (ii) and (iii), so that the star is the e¢ cient

network, but is only sometimes pairwise stable and even then not uniquely so. It is easy to

see why if c > �, then the e¢ cient (star) network will not be pairwise stable. This follows

since the center player gets only a marginal bene�t of � � c < 0 from any of the links. This

tells us that in this cost range there cannot exist any pairwise stable networks where there is

some player who just has one link, as the other player involved in that link would bene�t by

severing it. For various values of c > � there will exist nonempty pairwise stable networks,

but they will not be star networks: as just argued, they must be such that each connected

player has at least two links.

Parts (ii) and (iii) of the above description of pairwise stable networks are illustrated in

the following �gure.

Figure 7: Two Pairwise Stable Networks in the Symmetric Connections Model

This simple model makes it obvious that there will be situations where individual incen-

tives are not aligned with overall societal bene�ts. While this connections model is highly
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stylized, it still captures some basic insights about the payo¤s from networked relationships

and it shows that we can begin to understand the incentives that underlie network formation

and see when resulting networks are e¢ cient.

This model also raises some interesting questions, that we can examine further. For

example, the central player in a star is one that we might intuitively think of as occupying

a particularly powerful and central position, and in many contexts we would actually expect

that player to be better o¤ than other players due to the centrality. However, in the context

of the connections model it can be that the central player is actually the worst o¤ as he or

she bears the greatest costs. An important missing ingredient is that there is no bargaining

or transfer of favors or payments that might compensate the center player. If we allow other

players to o¤er to �pay�the central player for maintaining ties, this can dramatically change

what turns out to be stable. As we shall see below, we can model such transfers and this will

change both the con�guration of payo¤s and which networks emerge.

To get a broader feeling for the ideas of e¢ ciency and stability, let us examine another

simple example.

3.2.3 Networks Between Firms: an Industrial Organization Perspective

There are various ways in which �rms form relationships that a¤ect market outcomes. They

can collaborate in research and development, they can merge, they can produce joint products

and ventures, they can contract on speci�c supplier relationships, they can collude, etc. As

the costs of production to various �rms and resulting prices and quantities produced and

demanded can all vary based on the di¤erent relationships between �rms, this is a natural

setting to apply network formation.59

Let us consider an example due to Goyal and Joshi (2003), which allows for easy char-

acterizations of e¢ cient and pairwise stable networks. When two �rms form a link it lowers

their respective costs of production. This is the only direct e¤ect of a link. There are also

indirect e¤ects, as �rms eventually compete in the market. The cost structure, and thus the

full network structure, a¤ects how much each �rm eventually sells on the market and the

resulting pro�ts.

In this model the marginal cost of production of �rm i is given by ci(g) = a � bni(g),
where ni(g) = jNi(g)j is the number of neighbors that �rm i has in the network g. (Set

a > (n�1)b > 0 so that costs are always positive.) Thus, each additional alliance that a �rm
undertakes lowers its marginal cost of production by an amount b.

The eventual pro�ts to �rms can be considered under various assumptions about how they

compete, with the two canonical ones being pure Cournot and pure Bertrand competition.60

59 see Bloch (2004) for a recent survey.
60For non-economists, Cournot competition refers to a situation where producers choose an amount to
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Let us �rst consider Cournot competition, where the market demand is given by the

inverse demand function with the price p = � �
P
i qi, where � > 0 is a given constant and

qi is the quantity of the good produced and o¤ered for sale by �rm i.

Under the assumption that � is large enough, it is easy to check that each �rm�s Cournot

equilibrium pro�ts are (qi(g))2, where61

qi(g) =
�� a+ nbni(g)� b

P
j 6=i nj(g)

n+ 1
:

From this, as Goyal and Joshi point out, it is very easy to derive the pairwise stable

networks. Note that the pro�ts of a �rm are increasing in qi(g). Note also that the network

enters qi(g) in proportion to nni(g)�
P
j 6=i nj(g). Thus, if links have a negligible cost, �rm i

gains with each link that it adds. If link costs are small enough, then the complete network

is the unique pairwise stable network under Cournot competition.

In measuring e¢ ciency here, one might also want to include consumer welfare as well as

the payo¤s to the �rms. The consumer welfare (consumer surplus) is strictly increasing in

the total quantity produced, and so they would like to see the complete network formed. As

it turns out, the �rms�total pro�ts are also increasing in the total number of links formed.

Thus, the complete network is e¢ cient whether or not the consumers are accounted for.

While the full calculations take a few steps,62 it is easy to compare the empty network to the

complete network. If there are no links formed, then each �rm�s pro�ts are
�
��a
n+1

�2
, while if

all links form, then each �rm�s pro�ts are
�
��a+bn(n�1)�b(n�1)2

n+1

�2
. Clearly, the total pro�ts

are higher when all links form.

Next, let us consider the other textbook form of oligopoly: pure Bertrand competition

where the �rms charging the lowest price split the market. In this setting, if there are at least

two �rms who have the lowest cost level, then they will end up bidding their prices down to

that cost and splitting the market, but making no pro�ts as the price will equal their cost of

production. In contrast, if there is one �rm who has a lower cost than the other �rms, then

that �rm will end up capturing the entire market at a price of the second lowest cost level.63

produce or a capacity and then the price that clears the market is determined by demand, while (pure)

Bertrand competition refers to a situation where �rms choose prices and then the lowest priced �rm(s) produce

to service the entire demand at that price. I will not try to describe these approaches to modeling oligopoly

here, as they can be found in most any �principles�textbook.
61A �rm�s pro�ts are (p � ci(g))qi. The �rst order conditions lead to @p

@qi
qi + p � ci(g) = 0. Noting that

@p
@qi

= �1, this implies that in equilibrium qi = p� ci(g), and so pro�ts are thus (qi)2. Solving qi = p� ci(g) =
��
P

j qj�ci(g) simultaneously across i, gives the explicit expressions for the quantities. A su¢ cient condition
for all quantities to be positive is that � is large, or that �� a� (n� 1)(n� 2)b > 0.
62Consult Goyal and Joshi (2003, 2004).
63Working out equilibria in asymmetric Bertrand games has some subtle points if a continuum of prices is

allowed. This is because the lowest cost �rm would like to underbid the other �rms by as small an amount
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This makes it quite easy to deduce pairwise stable networks. If there is any positive cost

to forming a link, then the only �rms willing to form links must be earning a pro�t. However,

the only time any �rm earns a pro�t under pure Bertrand competition is when a single �rm

has a lower cost than all others, and then only that �rm earns a positive pro�t. This means

that at most one �rm would ever be willing to bear the cost of a link. Thus, no links will

form, and the unique pairwise stable network is the empty network.

Here, we see that the resulting network will not be e¢ cient either from the �rms�or the

consumers�standpoints. From the industry pro�t standpoint, it would be better if some links

were formed so that some �rm earned positive pro�ts (supposing small enough link costs),

and in most cases the highest industry pro�ts would actually involve a star network where

the center �rm would enjoy a very low cost and also see much higher costs and thus high

prices from its competitors. This would be the e¢ cient network structure if link costs are

small and only �rms�pro�ts are considered. From the consumers�perspective, it would be

best to see a low price. When the consumers�welfare is also accounted for (and again, link

costs are negligible), the e¢ cient network would be one of what Goyal and Joshi (2003) call

�interlocking stars�. That is where there are two �rms, i and j, that are each linked to every

other �rm, and �rms other than i and j are only linked to i and j. This leads to the lowest

price and no pro�ts for the �rms, but leads to a maximum of consumer surplus (as well as

consumer surplus plus pro�ts).

While the networks in these examples again turn out to be stark in their structure, we

again see that there are some circumstances where incentives to form links are congruent with

overall welfare, and other cases where they are not. In the connections model this depended

on the link formation costs. In the above oligopoly models, it is the market structure that

determines whether or not there is a tension between stability and e¢ ciency.

3.2.4 A General Tension between Stability and E¢ ciency

In situations where individual payo¤s and welfare are determined by the entire structure of

a network, there are naturally externalities present. The decision of some agents to form

or sever links can have important consequences for other individuals, who are not directly

involved in those links but may be indirectly a¤ected by them. In the connections model,

a decision of the center agent in a star to maintain a link with some agent gives indirect

bene�ts to all of the other agents. In the oligopoly model, the decision of one �rm to link to

another lowers both of their costs, which can be detrimental to the other �rms.

Given that there are externalities present, it should be expected that the networks that

as possible, which means that there are no pure strategy equilibria. However there are equilibria where the

higher cost �rms mix (with support in a small interval with its min at the second lowest cost), that will lead

to the claimed outcome, as described by Blume (2003).
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are stable as equilibrium structures do not correspond to those which are e¢ cient. However,

what is less expected, is that we cannot always correct this ine¢ ciency, even if we are allowed

to tax and subsidize agents for the links they form and even in a complete information

setting. The fact that no �reasonable�set of transfers can help rectify the disparity between

the equilibrium and the e¢ cient networks is easily seen through the following simple example

from Jackson and Wolinsky (1996).

Consider the utilities pictured in the following �gure.

The utility of each agent in the complete network is 4. The utility of each connected agent

in a linked pair is 6 (with the disconnected agent having utility 0). The e¢ cient network is

one with two links, where a total utility of 13 is generated, with the central agent getting a

utility of 4.5 and the other two agents getting a utility of 4.25 each.
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It is obvious in this example that in the absence of any transfers, the pairwise stable

networks all fail to be e¢ cient. The pairwise stable networks are only those involving a single

link. In any other network some agent(s) have an incentive to sever a link (every agent has
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such an incentive in the complete network, and the center agent has an incentive to do so in

each of the two link networks).

So, let us consider some possible transfers to try to support an e¢ cient network as being

pairwise stable. Given the symmetry of the example, it is enough to consider any of the

two-link networks. Let us consider the middle one. We see that the payo¤s with potential

transfers are 4:25 + t1, 4:5 + t2 and 4:25 + t3. In order to have the transfers be feasible, it

must be that t1 + t2 + t3 � 0. Given the complete symmetry between the �rst and third

agents, let us set their transfers to be equal so that t1 = t3.

Given that we want to adjust the transfers so as to ensure that the middle two-link

network is pairwise stable, we need to make sure that the �rst and third agents would not

gain from adding the missing link. Thus, we need t1 = t3 � �:25. However, in order to have
the network be pairwise stable we also need the second agent, or center agent, to be willing

to keep both of the links that are in place. As that agent gets a payo¤ of 6 if either link is

deleted, it must be that t2 � 1:5. However, now we have violated the feasibility condition as
the total sum of transfers needs to be greater than one to ensure pairwise stability.64

There are ways around this, but they require treating agents unequally (e.g., setting

t1 and t3 di¤erently even though the agents are identical in the problem), or else making

transfers at some of the other networks in ways that violate some other conditions.65 For

instance, suppose that we set transfers so that we completely equalize utilities for all agents

in each network. While this would require allocating utility to agents who may not even be

connected to the network, it does provide all agents incentives that coincide with the overall

societal value.

3.2.5 Bargaining and Link Formation

Another important point is made by Currarini and Morelli (2000) who show that incorporat-

ing the allocation of utilities as part of the bargaining process that accompanies link formation

can also lead to more e¢ cient network formation.66 They describe a speci�c extensive form

game where players announce both the links they wish to form and the payo¤s they demand.

In that game players are ordered exogenously. Without loss of generality, assume that this is

in the order of their labels, so that player 1 moves �rst, then player 2 and so forth. At his or

her turn a player i announces the set of players with whom he or she is willing to be linked

64This example extends for weaker notions of e¢ ciency and a variety of notions of stability. See Jackson

and Wolinsky (1996) to see extensions to other stability notions, and Jackson (2003) for details on weakening

the e¢ ciency criterion.
65See Dutta and Mutuswami (1997) for an analysis of ways of reallocating utility so that that some e¢ cient

network is strongly stable for a wide variety of settings, when this equal treatment property is dropped.
66Mutuswami and Winter (2000) also discuss a similar network formation game and also show that such

positive results hold in a broad range of settings, but under a slightly di¤erent formulation.
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(Si � N n fig), and a payo¤ demand vi 2 IR. The outcome of the game is then as follows.
The actions S = (S1; : : : ; Sn) determine a potential network g(S) by having a link ij be in

g(S) if and only if j 2 Si and i 2 Sj . So a link is in the potential network if and only if
both agents involved in the link have said that they are willing to be linked to each other.

This is not the �nal network, as one has to check to see whether the payo¤ demands that the

agents each made can all be satis�ed. The network that is eventually formed is determined by

checking which components of g(S) are actually feasible in terms of the demands submitted.

That is, if g0 is a component of g, then g0 is actually formed if
P
i2N(g0) vi �

P
i ui(g), and

otherwise none of the links in g0 are formed.67

To see how this works in the example in Figure 8, let us suppose that agent 1 moves �rst,

agent 2 moves second and agent 3 moves third. The equilibrium is as follows: 1 announces

that he or she wishes to form links with both other agents (S1 = f2; 3g) and demands a
payo¤ of v1 = 6:5. 2 then announces that he or she is willing to form a link with agent 1

(S2 = f1g) and also demands a payo¤ of v2 = 6:5. Agent 3 then announces that he or she
is willing to form a link with agent 1 (S3 = f1g) and demands a payo¤ of 0. The e¢ cient
network f12; 13g forms and the payo¤s are 6.5, 6.5, 0, respectively. The asymmetry in payo¤s
is due to the ordering of the players in the game and echoes the point we made before, that

completely similar agents must be treated asymmetrically in order to overcome the tension

between stability and e¢ ciency.

For the reader interested in the game theoretic details (others can skip this paragraph),

we can verify that this is an equilibrium as follows. It is clear that there is no possibility for

3 to earn any higher payo¤ as the link with 1 is the only link he or she can form (given the

other players�announcements) and the link can only be formed if 3 demands a payo¤ of 0.

Let us check on the possible deviations for 2. If 2�s deviation leads to a network that ends up

involving 1 and 2, then 2 could not demand more than 6.5 and have it be feasible. So, the

only possible deviation for 2 that might be pro�table, must involve forming the network f23g.
Here, we now need to careful to specify the equilibrium continuation strategies of player 3

in response to player 2�s potential deviations. If 2 tries to form a link with only 3 and to

demand more than 6.5, then 3�s continuation is to form the network f13g (by saying that
she is willing to form a link with 1 and demanding 5.5) and get a higher payo¤ since 1 is

only demanding 6.5. Thus, 2 has no improving deviation. The remaining deviations to check

are those by 1. If 1 asks for x > 6:5, then in the continuation 2 can respond with S2 = f3g
and anything slightly below x and the network that would form would be f23g and 2 would
get a payo¤ above 6.5. Thus, all continuation equilibria after such a deviation by 1 must

involve 1 getting a payo¤ of 0.68 This equilibrium argument actually gives much of the insight

67This game is de�ned for cases where the utilities are component additive, so that if g0 is a component of

g and i =2 N(g0), then ui(g n g0) = ui(g).
68This also ties down the o¤-equilibrium path strategies, which are for 2 also to demand x (provided it is
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behind Currarini and Morelli�s more general argument that e¢ cient networks are the unique

equilibrium outcomes in a reasonably broad class of network settings.69

These results clearly hinge on the structure of the link-formation-bargaining game, and

in particular on its �xed ending point which provides for the asymmetry in bargaining power

across the agents (where, for instance, the last player to move is at a real disadvantage).70

Nevertheless, we have learned that whether or not agents have the ability to bargain over

what their payo¤s should be at the time of link formation can be important in determining

the type of network that forms.

3.2.6 The Economics of Small Worlds

The results from the previous section illustrate some central lessons that have come out of

the game theoretic literature, namely that:

� equilibrium networks can di¤er from e¢ cient networks,

� whether or not e¢ cient and stable networks coincide is context-dependent,

� discrepancies between stability and e¢ ciency can only sometimes be recti�ed with trans-
fers, and

� the networks that emerge in equilibrium, and the resulting allocation of costs and
bene�ts, depend on various features of the formation process and equilibrium notion.

We also see that the game theoretic analysis has a very di¤erent �avor and form than

some of the random graph models we discussed in the earlier section. In particular, the

predicted equilibrium networks are often quite stark in the nature (stars, complete networks,

interlinked stars, etc.). This is partly due to the fact that most of the models that have

been solved have strong symmetries in the assumed payo¤ functions. Without any natural

heterogeneity in the problem, it is not surprising that very simple network structures emerge

as predictions.

This does not mean that equilibrium models are only suited for deducing broad conclusions

about tensions between incentives and e¢ ciency, or other such questions. These models still

no more than 12, and 12 otherwise) and 3 to form the link with 2.
69The precise settings are those where the social value of a network is anonymous (so that any permutation

of agents in their positions in a network generates the same value), component additive (so the total value

of the network is simply the sum of the utilities that each agent would earn if only their component were

present), and satisfy size monotonicity (which means that whenever g+ ij has fewer components than g, then

g + ij results in a strictly higher total utility than g).
70See Bloch and Jackson (2003) for an analysis of endogenous transfers in settings that treat players more

symmetrically (simultaneous move games). They relate the types of transfers that are needed to reach e¢ cient

networks to the types of network externalities that are present in the setting.
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have the possibility to provide lessons that are more descriptive in nature. For example,

economic forces actually tell us a great deal about why we should expect to see �small-

worlds�. That is, why should we see high clustering on a local level, and short average path

length overall? Ideas related to this have been explored in a series of papers (Johnson and

Gilles (2000), Carayol and Roux (2003), Galeotti, Goyal, and Kamphorst (2004), Hojman

and Szeidl (2004b), and Jackson and Rogers (2005)).

The basic ideas are as follows. Consider a situation where the cost of maintaining a rela-

tionship between two agents depends on their proximity. Proximity need not be geographic,

but can refer to any sort of nearness according to some traits. It is relatively easier to form

friendships when two people attend the same school, have the same profession, or have other

things in common. Such low costs on a �local� level help explain why high clustering will

be present in a network. The explanation for low average path length in a social network

is (slightly) more subtle. Consider a network where costs are related to proximity. Suppose

we ended up with a network that exhibited small clusters of individuals who were tightly

connected in small groups (those close to each other), and yet the average path length in the

overall network was high, due to an absence of links across groups. We might imagine that

forming a link that was not �local� in nature was fairly costly. However, with an absence

of links across groups, by forming a link that was not �local�in nature one would gain sub-

stantial access to a number of agents. The fact that a single link can substantially shorten

the distance to a large number of agents at once, is precisely what makes that link valuable.

While one will not see as many links that are very costly, the large potential bene�t that

they bring will mean that they will be present, and that overall distances in the network will

have some upper bound.71

These ideas are illustrated in the following �gure.72

71This relates to Burt�s (e.g., Burt (1992)) idea of structural holes. One will not see too many �structural

holes�, where the operational de�nition of a structural hole in this context would be that the addition of a

link could substantially shorten distances among two otherwise disconnected or distantly connected groups of

nodes.
72This �gure is somewhat reminiscent of �gures concerning Watts� (1999) �caveman� model. However,

there is little relationship as the models described here are deriving the structure from equilibrium through

an explanation of relative costs and bene�ts, whereas the caveman model presumes initial clusters and then

rewires them.
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Figure 8: A Pairwise Stable Network in the Islands Model

This is a variation on the connections model called the �islands model�by Jackson and

Rogers (2005). In that model, agents are located on separate islands (which might be geo-

graphic, professional, or relate to some other characteristics). There is a relatively low cost

to linking to an agent on one�s own island c > 0, while the cost of linking to an agent on a

di¤erent island is much higher, C >> c. The bene�ts accrue just as in the connections model.

Even though the cost is much higher to linking across islands, we still see some links across

islands, as if such links were not present, then the gain from linking would be quite substan-

tial as adding one link would provide access to a large number of agents at path lengths of

only one or two. In the �gure above, it is easy to verify that the given network is pairwise

stable when c < :04, 1 < C < 4:5, � = :95, and where the �ve agents who are completely

connected to each other lie on the same island. While this example is suggestive, it is easy

to see that these properties hold more broadly (e.g., see Jackson and Rogers (2005)).

This economic analysis of small worlds gives complementary insights to those of Watts

and Strogatz (1998) discussed above, which gives more of an explanation of how it is possible

to have both high clustering and short path length at the same time, whereas the above model

gives more insight into why we should expect this to be what we see in most social networks.

Also, a distinguishing feature between an economic modeling and a random modeling of these

features concerns �shortcut� links (i.e., those which link distant parts of the network and if

deleted would substantially alter the distance between the connected nodes). In a random
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model, while unlikely, shortcut links may occur in close proximity to each other. Under the

economic approach, the cost of building a second shortcut link next to an existing one would

outweigh the bene�t.73

3.3 Discussion of Models of Network Formation

Let me now discuss some of the strengths and weaknesses of the two approaches to modeling

network formation.

An unavoidable challenge in modeling networks is dealing with the complex combinatorial

nature of the setting. The number of networks that can form is exponentially large in the

number of nodes, which makes tractability a major issue. This has produced substantial

hurdles for both the random and strategic approaches to network formation, and yet they have

each made remarkable progress in advancing our understanding of what types of networks

are likely to emerge.

The random graph based models have a strength of producing speci�c networks, or dis-

tributions over possible networks, which exhibit signi�cant heterogeneity that comes largely

from chance and/or through birth dates. The models have provided some insight into how

speci�c features of networks (e.g., fatter tails in the degree distribution) might be traced to

certain aspects of a formation process (e.g., some form of preferential attachment). While

these models are able to match increasingly long lists of features of observed networks, the

processes end up being ad hoc: structured to match those features, and generally we need

new processes each time we add a new feature. Another limitation is that the models are

descriptions of processes, essentially algorithms, for generating networks. This has two im-

plications. First, as discussed above, this helps answer the �how�of formation, but does not

provide much insight as to the �why�.74 And second, a process does not provide us with

methods to evaluate whether the emerging networks are good or bad, that is, whether the

resulting networks are e¢ cient.

These last weaknesses are the primary strengths of the game theoretic models. The game

theoretic structure provides both a framework for evaluating networks and for understanding

why (rather than how) certain networks are likely to emerge. This has resulted in some

understanding of the relationship and tension between stable networks and e¢ cient networks.

The weakness of the game theoretic approach is that most of the explicit characterizations

of equilibrium networks are often so stark that the predicted networks have overly simple

structures. Thus, while such models can say something about whether the networks will

end up being e¢ cient or not, it has had a hard time predicting things like what sort of

73 I thank Yann Bramoullé for pointing this out to me.
74Another way to phrase this how versus why distinction is to distinguish between reduced form models

versus structural models.
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degree distribution the network might have. One can push the models to derive some general

features, such as those of the �small-worlds� properties discussed in the last section, but

deriving very clear pictures of emerging large social networks is still beyond the state of the

art.

Interestingly, these two approaches are very complementary. This suggests that some

combination of the two approaches might be very fruitful. Incorporating some random ele-

ments in terms of which links might be considered at a given time, and then some explicit

payo¤s and insight into why that link might or might not be added, should end up produc-

ing important new insights into the types of networks that we should expect to emerge in

di¤erent settings, and the how and why behind them.75

4 Behavior on Networks

Let me now turn to the second main issue, and discuss a few examples of models of networks

that relate social network structure to individual behavior.

As with any scienti�c study one can be interested directly in the phenomenon itself, or

one can be interested in its broader implications. That is, one might simply be interested in

(social) networks, and understanding their characteristics, without any broader perspective.

As networks are rich and complex by their very nature, they hold much intellectual interest.

Nevertheless, we should also be interested in understanding how the networked patterns of

social interactions are important in determining (human) behavior and social outcomes. It

is this aspect that allows the science and modeling of networks to have relevance outside of

itself.

This aspect of modeling networks tends by its nature to be substantially more context

speci�c than the modeling that I have discussed up to this point. That is, relating networks

to outcomes relies on examining a setting and understanding the role of the network in that

context. This is necessarily context speci�c, although there are some general tools to be

developed and lessons to be learned. As such, it is hard to summarize general �ndings.

Instead here, I will give a few examples that illustrate the variety of applications that have

been studied and give a glimpse of things that have been learned.

Let me emphasize here, that understanding how network structure impacts behavior and

outcomes is also very important as a building block for the �economic approach� in the

75There are some random dynamic models of network formation that are based on incentives to form links,

such as Watts (2001), Jackson and Watts (2002a), Tercieux and Vannetelbosch (2004). However, those models

use the random process to select from the set of pairwise stable networks, and are thus really more squarely

in the game theoretic literature. While these might serve as a starting point, a truer hybrid would involve

randomness that really limited the set of potential opportunities to form links in a much stronger way so that

some potentially valuable links never even have the chance of being formed.
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following manner. The discussion above takes as given that each player can be assigned a

payo¤ as a function of a network. In many contexts those payo¤s will be the result of some

interaction. For instance, if agents are connected in a network and the network represents

trading opportunities, then we must predict as a function of the endowments, preferences, and

network structure, which trades will be made, at which prices and how that will determine

agents�payo¤s. Thus, from primitives and a network structure we can derive induced payo¤s

and understand how changes in network structure will change the overall e¢ ciency or societal

welfare, as well as individual incentives to form or maintain links. We will see more of this

below, and it is an essential part of modeling and understanding the impact of social networks.

There is one other aspect of understanding how network structure impacts behavior that

also bears discussion. As di¤erent structures have di¤erent impacts on behavior, understand-

ing them and having an associated cost/bene�t or welfare analysis can lead to speci�c policy

prescriptions. For instance, understanding how the centrality of criminals a¤ects their neigh-

bors�criminal behavior has important implications for government policy (e.g., see Ballester,

Calvo-Armengol, and Zenou (2003)). Understanding how social networks impact employ-

ment opportunities, social mobility, and human capital investments has implications for the

subsidization of education (e.g., see Calvo-Armengol and Jackson (2003,2004,2005)).

4.1 Markets and Networks

There is a rich set of studies of markets and networks from an economics perspective (Kir-

man (1997), Ioannides (1997), Tesfatsion (1997), Weisbuch and Kirman and Herreiner (2000),

Kranton and Minehart (2001), Corominas-Bosch (2005), Wang and Watts (2002), Galeotti

(2005)), as well as from the sociology literature (e.g., the exchange networks literature follow-

ing Cook and Emerson (1978)). This is one of the most important and obvious applications

of networks to economics as so many markets are not centralized, but rather consist of a

complex structure of bilateral trades and relationships.

A recent paper by Kakade, Kearns, Ortiz, Pemantle, and Suri (2004) provides an example

of a model that relates market outcomes to random graph-based network structures.76 They

examine a general equilibrium in a market, where the set of trades that can occur are governed

by a social network. Their aim is to tie price dispersion to the statistical properties of the

underlying network. This is done in the context of a simple buyer-seller model.77 Buyers

have cash endowments and a constant marginal value for a consumption good. Sellers have

76Another important example is found in Kirman (1983) and Kirman, Oddou and Weber (1986), who, in

the context of core convergence in exchange economies, analyze the impact of limiting blocking coalitions

to connected groups, where connection is de�ned relative to a Bernoulli random graph. Depending on the

probability of links forming in the random graph, one can obtain very di¤erent conclusions about which

coalitions can form and block, and about the resulting core allocations.
77See also Kakade, Kearns and Ortiz (2004) for a more general setting.
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unit endowments of the consumption good (which they do not value) and desire cash. Buyers

thus buy from the least expensive seller(s) with whom they are connected until they have

exhausted their cash budget. Prices are seller-speci�c and determined to clear markets.78

The full con�guration of prices can be quite complex, but the basic intuition is that agents

who have more connections should expect better prices and so the price that an agent pays

or receives should be related to his or her degree and position in the network. The authors

then examine a stochastic process for generating networks of links between buyers and sellers,

which is similar to some discussed above (see Section 3.1.5) in that it is a combination of

forming links completely at random and forming them in a manner based on preferential

attachment.

While the model is di¢ cult to solve analytically, the authors do obtain some bounds in the

extremes. For instance, they show that in the extreme where links are formed completely at

random, and the probability of forming a link is high enough then there is no price dispersion.

In contrast, in the other extreme of pure preferential attachment there will generally be

greater asymmetries in the degrees of nodes and there will be price dispersion. Through

simulations, the authors then estimate the price dispersion that would result from observed

trading patterns based on a United Nations data set of trade volumes.

Given the importance of understanding trade and market structure, this is still an area

that deserves much more study. The model discussed above is speci�c both in its assumptions

about transactions and the types of networks it considers, and yet this still proves to be dif-

�cult to handle analytically. Moreover, it seems clear that the network structure underlying

such trading relationships has a substantial strategic component to it and so the random

graph models might not be such good approximations of trading networks, although there is

no empirical research to really work from on this question. Previous models based on strate-

gic formation (e.g., Kranton and Minehart (2001) and Corominas-Bosch (2005)) are more

tractable analytically, but only represent �rst-steps in modeling, as they fall short of includ-

ing the heterogeneity needed (e.g., in endowments, preferences, and production technologies)

to match most markets.

4.2 Labor Markets

As discussed in Section 2, it is well-documented that networks of social contacts play an

important role in employment. Recent work now brings network structures to the study of

employment and wages over time. Calvó-Armengol and Jackson (2004) examine a model

78This assumption embodies price-taking, which might be the weakest aspect of the model, given that much

of the trading is done bilaterally. Corominas-Bosch (2004) presents an alternative buyer-seller formulation

where prices are determined through an explicit bargaining game, and Kranton and Minehart (2001) provide

a model where prices are determined through simultaneous auctions.
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where agents only obtain information about jobs through a network of connections.79 Jobs

arrive exogenously to the network and agents occasionally lose a job according to some

exogenous process. If an agent is already employed and hears about a job, then he or she

passes the information on to his or her unemployed neighbors.80 This passing of information

to social ties means that agents� employment and wages over time will depend on their

position in the social network, how many social ties they have, and how well-employed those

social ties are. They show that this results in correlation patterns in wages and employment

of connected agents, and that these patterns depend on the network structure. Also, through

simulations, they show that the correlation varies with the distance and location of agents

in the network, as well as the structure of the network. They also show that the condition

of an agent�s social ties has an impact on their decision of whether to stay in the work force

or drop out. This results in a contagion e¤ect where if the neighbors of an agent drop out of

the labor force, then that increases the likelihood that the agent will drop out, and so forth.

This can lead to pockets of drop-outs and persistent unemployment, and among other things,

can also help explain persistent di¤erences in wages and drop-out rates across races.81

While these results show that incorporating social networks into models of labor markets

is important for our understanding of employment and wage patterns, there is still much to

be learned about how network structure matters. The empirical and theoretical work to date

makes it clear that networks play a key role in labor markets. However, it would be very

useful to have a richer understanding of how di¤erences in the structures of agents� social

networks impact their wage and employment over time, as well as how the network co-evolves

with their career and job choices.

4.3 Learning and networks

Another application of obvious importance in understanding how network structure impacts

behavior, is to understand how information propagates through a network, and in particular

how di¤erent people in a social network learn from each other. Generally, this can be a quite

di¢ cult modeling question, as one needs to model information, what it is used for, and how

it is observed, transmitted, and/or learned.

Taking a Bayesian perspective is a standard approach in economic modeling, and an

obvious starting point. The models of Bala-Goyal (1998) builds from this perspective (see

also Allen (1982) and Ellison and Fudenberg (1993, 1995)).

79See also Calvó-Armengol (2004) and Jackson and Lopez-Pintado (2005).
80See Calvó-Armengol and Jackson (2005) for a richer model where jobs are heterogeneous, the arrival rate

may be state dependent, and job information may circulate indirectly through the network.
81Calvo-Armengol and Jackson (2005) study how investments in education based on social network status

can also help us to understand the prevalence of social immobility, which has been found without exception

in countries around the world.
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Bala and Goyal (1998) make a very simple but important point. Consider a series of agents

connected in a social network who all face the same stationary, but random, environment.

The network is �xed and time progresses in discrete dates where agents each choose one of a

�nite set of actions at each date. The payo¤s to the actions are random and their distribution

depends on an unknown state of nature. The agents are all faced with the same set of possible

actions and the same unknown state of nature. They all have identical tastes and face the

same uncertainty about the actions. Over time, each agent observes his or her neighbors�

choices and outcomes. The main conclusion is that eventually the agents will converge to

choosing the same action, based on the observation that over time players who observe each

others�actions and payo¤s should eventually come to choose the same action.82

For example, consider a situation with two choices A or B. A results in a payo¤ of 1 per

period for certain. B pays 2 with probability p and 0 with probability 1� p. So, if p > 1=2
then any agent would prefer to choose B (given either su¢ cient patience or risk-neutrality).

However, p is unknown to the agents. What Bala and Goyal show is that each agent in a

connected network will obtain the same long-run utility. The intuition is as follows. We need

only reason that any two neighbors earn the same long run utility, as this implies the same

must be true network-wide. If one neighbor is doing better than another, then the neighbor

with the poorer action, will observe the other agent. For instance, suppose that one agent

is choosing A each period and the other is choosing B and p > 1=2. The agent choosing A

will learn that p > 1=2 by observing the other agent�s payo¤s and will eventually switch to

choose B as well.83

Note that the fact that all agents end up with the same long run utility does not mean

that all agents converge to choosing the �right� action. It is possible that all agents start

out choosing A and always choose A (being su¢ ciently pessimistic about B to make it not

worthwhile to even experiment), even though B would lead to a higher payo¤. However, Bala

and Goyal show that if the network is large enough, and there are enough agents who are

optimistic about each action spread throughout the network, then the probability that the

society will converge to the best overall action can be made arbitrarily close to 1. The idea

is that there will be su¢ ciently many experiments by the optimistic agents so that the true

payo¤ of each action will be learned and then the society will converge to the right action.

While the above lessons show the potential for the long-run conductance of information

through a network, they do not give us much impression of what happens in the shorter

82See Morris (2000) for another analysis of the spread and convergence of behavior through a network,

but in a di¤erent context where uncertainty regards strategic choices of others and players care about their

neighbors�choices.
83Bala and Goyal work with a boundedly rational model. See Gale and Kariv (2003) for a Bayesian analysis.

Also, see DeMarzo, Vayanos, and Zwiebel (2003) for a setting where beliefs are updated over time in a

boundedly rational way, but where they need not converge across agents, as actions are only taken once and

it is only information that is repeatedly passed.
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run, which might often be quite relevant, especially if the world is not stationary. Nor does

network structure enter the above discussion in any meaningful way. There are papers that

have made more progress on understanding how network structure impacts beliefs. Gale and

Kariv (2003) (see also Choi, Gale and Kariv (2004) and Celen, Kariv, and Schotter (2004))

explore the interaction between network structure and beliefs under a variety of learning

assumptions. Due to the complexity of some of the inference problems, they are able to

provides a detailed understanding for long run beliefs in small networks (e.g., three nodes)

but leave open questions regarding more complex networks. DeMarzo, Vayanos, and Zwiebel

(2003) are able to deal with more general network structures by assuming that agents follow

a speci�c belief updating rule, where agents (erroneously) treat new iterations of information

as independent of previous iterations. They document an intuitive relationship between the

position of an agent in the network and their resulting impact on beliefs and opinions. These

studies are important steps in developing a fuller understanding of how interaction structure

a¤ects information dissemination and belief formation.

4.4 Spread of Information, Viruses, Disease

Related to studies of learning through a network, which have focused on belief updating

and action choice, there are also studies of the physical spread or transmission of infections

and behavior that are transmitted directly or by chance, and not through some updating

or optimization procedures. Examples include the spread of diseases, computer viruses, and

also the spread of some types of behaviors, beliefs, and information. Standard models of

such spreading come from the epidemiology literature, which has focussed on the spread of

contagious disease. One model that is useful to discuss a bit is the SIS model (�susceptible,

infected, susceptible�model, see Bailey (1975)), which is a variation on the seminal model in

the literature, the SIR model (�susceptible, infected, removed�(SIR) model, which dates to

Kermack and McKendrick (1927)). Such models were originally based on random meetings

of individuals. However, networked interactions were discussed as early as Rapoport (1953,

1953b), and eventually models that allow for network structure were studied by Anderson

and May (1988) and Sattenspiel and Simon (1988). How infection rates depended on speci�c

aspects of the network structure has more recently been studied by Kretschmar and Mor-

ris (1996), Pastor-Satorras and Vespignani (2000, 2001, 2002), Lopez-Pintado (2004), and

Jackson and Rogers (2004), among others. In particular, these studies allow one to estimate

infection rates based on degree distributions.

Let me describe this setting in a bit more detail, as it o¤ers one of the clearest under-

standings of how network structure can be related to outcomes, and the tools and methods

used in such analyses look to be useful in other contexts.

Consider a network where a given healthy (also called �susceptible�) node catches a
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disease in a given period with a probability �kifi, where � 2 (0; 1) is a parameter describing
a rate of transmission of infection in a given period, ki is the (in-)degree of node i, and fi
is the fraction of i�s neighbors who are infected.84 Also suppose that any �infected� node

recovers in a given period with a probability � 2 (0; 1). Thus, nodes are either susceptible or
infected, and can alternate between these states depending on the state of their neighbors.

This results in a Markov chain. We can then ask a series of questions. First, how high does

the infection rate � have to be relative to the recovery rate � in order to have the infection

reach some nonzero steady state in the population? Second, can we estimate the long-run

steady-state proportion of infected nodes? Third, can we relate the answer to these questions

to the network structure?

The heuristic (mean-�eld-based) approach that has been used in this literature to esti-

mate infection patterns is as follows. Consider a large network whose degree distribution is

described by P , where P (k) is the proportion of nodes that have degree k. Moreover, let

us make the (restrictive) assumption that there is no correlation in degree between linked

nodes. Let �(k) denote the steady-state infection rate of a node with degree k, and � be the

average across nodes: � =
P
k �(k)P (k). The probability that a given link points to a node

of degree k is kP (k)<k> (where < k > is the average degree under P , < k >= EP [k]). Note that

this is di¤erent from the distribution of degrees across nodes, as nodes with higher degree

are proportionally more likely to be reached via any given link. Using this we estimate the

probability that a given link points to an infected node in any given period in a steady state

distribution under the mean-�eld hypothesis. This is represented by the parameter

� =

P
�(k)kP (k)

< k >
: (5)

Now to estimate the steady-state value of �(k), we set the change in the proportion of

nodes of degree k that are infected to 0. That is,

0 =
d�(k)

dt
= �k�(1� �(k))� ��(k):

Here, �k�(1� �(k)) represents the number of healthy nodes that become infected, and ��(k)
represents the number of sick nodes that become healthy. These must be equal in a steady

state.85

84This is obviously a fairly speci�c infection mechanism, but for small infection rates o¤ers a reasonable

approximation of the probability of getting infected if infection rates are independent across neighbors (a

questionable assumption if there is clustering). See Lopez-Pintado (2004) for the analysis of other infection

mechanisms.
85The system here is clearly heuristic, as if we ran a Markov process on this system, all nodes would

eventually converge to being susceptible and this is an absorbing state. To be careful, one needs to have some

exogenous probability that the nodes become infected even when none of their neighbors are.
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Letting � = �=�, we derive

�(k) =
k��

k�� + 1
: (6)

Equations 5 and 6 can the be solved simultaneously to derive the steady state distribu-

tions.

Let us �rst solve this in the easy case where the network is completely regular so that all

nodes have degree < k >. In that case, � = � and (6) becomes

� =
< k > ��

< k > ��+ 1
:

There is always a solution of � = 0, and then also another solution of � = 1 � 1
�<k> which

is greater than 0 only if � > 1
<k> . Thus, in order for infection to spread in the network, the

relative infection/recovery rate has to exceed a threshold. This is another example of a phase

transition, of which we saw examples earlier in the discussion of the properties of random

graphs.

Pastor-Satorras and Vespignani (2000) solve this system in the case where the degree

distribution is scale free (using P (k) = 2 < k > k�3). They �nd an approximation of

� = 2e�1=<k>� (for small �). Thus, they deduce that even with tiny values for �, there will

be some non-zero infection rate in a scale-free network. This contrasts with the fact that �

has to exceed a positive threshold in a regular network in order to reach a non-zero infection

rate.

Lopez-Pintado (2004) uses the following approach to characterizing situations where the

solution for the steady state � (and thus the steady state infection rates �(k) and �) will be

nonzero.86 Let

H(�) =
X kP (k)

< k >

�
�k�

�k� + 1

�
: (7)

So �xed points of H correspond to steady-state distributions. Note that H(0) = 0, and that

H is increasing and strictly concave in �. Thus, in order for H to have another �xed point

above � = 0, it must be that H 0(0) > 1.87 Let us check when this is true. Note that

H 0(�) =
X kP (k)

< k >

�
�k

(�k� + 1)2

�
:

That is, H 0(0) = �EP [k
2]= < k >. Thus, in order to have � > 0 (and thus a steady-state

infection rate � > 0), we must have � > <k>
<k2>

(where < k2 >= EP [k
2]). In the regular

network, this is the claimed threshold of 1= < k >, while in a scale-free network < k2 >

86See also Pastor-Satorras and Vespignani, (2001, 2002). Moreno, Pastor-Satorras and Vespignani (2003)

also allow for correlation among degrees in a family of distributions.
87Noting that H is continuous and increasing in �, H(0) = 0, and H(1) < 1 (from equation (7), as this is

the expectation of an expression that is always less than 1), it follows that there will be a �xed point above 0

whenever H 0(0) > 1.
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is in�nite and so the threshold is 0. For a Poisson degree distribution it falls somewhere

between the two extremes.

The basic idea is that nodes with high degree can serve as a conduit for infection. Even

very low infection rates can lead them to become infected as they have so many neighbors.

They then can pass the infection on to a large number of nodes. The degree distribution then

determines the relative makeup of the network in terms of nodes of di¤erent degrees. In a

regular network, every node has the average degree. As we move to a Poisson distribution,

we begin to see more of a spread in the distribution and some higher degree nodes and others

of lesser degrees. This leads to a lower threshold at which infection can be sustained, as the

higher degree nodes can begin to serve as the conduits as discussed above. As we continue to

increase the spread and move to a scale-free network, we have extremely high degree nodes,

and very low degree nodes. The variance is in fact in�nite and infections can be sustained at

arbitrarily low net rates of contagion.

Building on this methodology, Jackson and Rogers (2004) show one can completely order

both the threshold rates of contagion needed to sustain an infection and the resulting infection

rates in terms of the networks degree distribution, by ordering the distributions in the sense of

second order stochastic dominance.88 In terms of the thresholds for infection, it is clear from

the above that as we change a network in the sense of second order stochastic dominance,

then we increase < k2 > and so we decrease the threshold � needed for an infection to be

sustained ( <k>
<k2>

).

What is a bit more subtle is that the behavior of the steady state distributions as it relates

to network structure exhibits very di¤erent features at low levels of � than it does at high

levels. Jackson and Rogers (2004) show the following:

Consider two networks with degree distributions P and P 0, respectively, where P second

order stochastically dominates P 0, and both have the same average degree.89 Then there

exist � and � such that

� If �� < � then the steady-state average infection rate under a mean-�eld approximation
is lower under P than P 0.

� If �� > � then the steady-state average infection rate under a mean-�eld approximation
is higher under P than P 0.

88One can also order things in terms of �rst order stochastic dominance, but that relationship is quite

obvious. If we simply increase the overall number of links then we will increase infection rates and decrease

the threshold needed to sustain infection.
89 If P and P 0 have the same average, then P second order stochastic dominates P 0 if and only if P 0 is

a mean preserving spread of P , which is equivalent to having
P

k f(k)P (k) �
P
f(k)P 0(k) for all concave

functions f . This implies that P 0 has a (weakly) higher variance than P , but also requires a more structured

relationship between the two.
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These results are illustrated in the following �gure, which pictures infection rates for

three varieties of networks (holding average degree constant).
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Figure 9: Steady State Infection Rates for Three Degree Distributions, as a Function of the

Log of the Relative Contagion/Recovery Rate

The intuition behind these results can be expressed as follows. The change in infection rate

due to a change in network structure (and in particular, a change in the degree distribution)

comes from countervailing sources, as more extreme distributions have relatively more very

high degree nodes and very low degree nodes. As discussed above, very high degree nodes

have high infection rates and serve as conduits for infection, thus putting upward pressure

on average infection. Very low degree nodes have fewer neighbors to become infected by

and thus tend to have lower infection rates than other nodes. As we make a mean-preserving

spread in the degree distribution, the overall impact depends on how the (direct and indirect)

increase in infection in changing some nodes to have higher degree compared to the decrease

in infection due to changing some nodes to have lower degree. When infection rates are

already high, infection rates tend to increase less than linearly in the degree of a node (if

simply due to the fact that they cannot increase above one). While if infection rates are low,

then there is a more than o¤setting increase in infection due to an increase of some nodes�

degrees, as their increased degree not only increases their infection rates, but also leads to an

increase in transmission.

What we learn from this analysis extends far beyond the understanding of infection rates.

It shows how we can use statistical characteristics of networks (e.g., comparing them in
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terms of stochastic dominance of degree distributions) to deduce the impact that they have

on behavior or outcome. These same methods have the potential to be applied much more

broadly to deduce how network structure impacts behavior in many other settings.

4.5 Public Goods

Another setting where we can see how network structure in�uences outcomes is the provision

of local public goods.

For instance, consider a model analyzed by Bramoullé and Kranton (2005). Agents each

choose an e¤ort level ei 2 [0;1). The agents are connected in a network, and they derive
bene�ts not only from their own e¤ort level but also from their neighbors - that is, the

other agents to whom they are directly linked. For instance, think of agents each collecting

information and then sharing that information with their direct neighbors. This includes a

variety of applications, from consumers sharing information with their friends about products

they have tried, to companies sharing information about production processes, to researchers

sharing ideas and methods. For simplicity, the model only considers the bene�ts �owing to

direct connections.

Agent i�s utility in a network g when e¤orts (e1; : : : ; en) are exerted is

ui(g; e) = b(ei +
X

j2Ni(g)
ej)� cei;

where b is a continuously di¤erentiable strictly concave function and c > 0 is a cost parameter.

Supposing that the solution b0(e�) = c is well-de�ned and has e� > 0, a great deal can

be deduced about the structure of the equilibria. Given the payo¤ structure, it is clear that

each neighborhood will have a total of at least e� produced. Normalizing e� = 1, this could

happen in various ways:
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Figure 10: Examples of Equilibrium Public Good Provision Choices in Two Networks

There is a sense in which the equilibria where some agents specialize and provide e¤ort

of 1 and others provide an e¤ort of 0 are more robust than the others.90 Bramoullé and

Kranton (2005) refer to these as specialized equilibria.

There is a complex structure to specialized equilibria, and there is a multiplicity of them.

For instance, consider any maximal independent set of nodes.91 Then have each node in

the maximal independent set choose action e� and all nodes outside of the set choose 0. As

Bramoullé and Kranton point out, this is clearly an equilibrium, and moreover, all specialized

equilibria must be of this form.

As this sort of public good model captures the substitutability of actions of neighbors

that would apply to many settings, it provides a particularly interesting one for further

study. The multiplicity of equilibria that Bramoullé and Kranton (2005) note, provides a

hurdle in terms of making predictions about how network structure a¤ects behavior, but

there are well-de�ned ways in which some equilibria appear to be more natural or robust

than others, and it appears that there is much that can be said about how behavior relates

to structure in the context of large networks.

90See Bramoullé and Kranton (2005) for details. They examine a perturbation where each agents actions

can be perturbed by a small amount and then must have a best response process converge back to equilibrium.

The only robust equilibria in this sense are specialized equilibria in which each non-specialist agent has at

least two specialists in his or her neighborhood.
91An independent set of nodes is a set such that no two nodes in the set are connected. A maximal

independent set is an independent set which is not a strict subset of any other independent set. It is then easy

to see that a maximal independent set is a set such that no two nodes inside the set are connected to each

other and any node outside of the set is connected to at least one node inside the set.
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4.6 Other Topics

There are many other areas that have been studied that relate network structure to out-

comes, and ones that are of obvious social and economic relevance. For instance, Ballester,

Calvo-Armengol, and Zenou (2004) examine how network structure in�uences criminal and

other behavior in a model where there are local positive externalities (for instance learning

or receiving help from friends that are also criminals) and global negative externalities (for

instance overall competition). Within a class of such models they are able to completely char-

acterize equilibrium outcomes and relate these to a measure of path-centrality in a network.

This provides interesting new insights relating behavior to centrality in a network. Activity

by players who are more central has more impact on other players�level of activity and leads

to greater feedback e¤ects.

There are also recent studies of risk-sharing on networks, which build on evidence from

recent studies (e.g., Fafchamps and Lund (2003) and De Weerdt (2002)) that indicate that

network structure plays a major role in determining how well risk is shared in rural societies.

Theoretical studies have looked at two issues: how the network structure can be modi�ed

over time as an endogenous part of the risk sharing (e.g., see Bloch, Genicot, and Ray (2005))

as well as how the network structure a¤ects the equilibrium incentives (e.g., see Bramoullé

and Kranton (2005b)).

There are also studies of play in games with complementarities in neighbors�actions, such

as in the context of coordination games (e.g. Ellison (1993), Young (1998), Morris (2000),

Jackson and Watts (2002b), Droste, Gilles, and Johnson (2000), Goyal and Vega- Redondo

(2005), Feri (2003), Lopez-Pintado (2005)) as well as other structures with complementarities

(e.g., Galeotti and Vega-Redondo (2005)). These studies have looked at both the change in

play and co-evolution of the network itself. However, to date, most of the work has focussed on

very simple games (e.g., two-by-two coordination games), and there is much that is unknown

beyond these special cases.

The wide variety of settings where network structure is an important determinant of

behavior makes it clear that this is one of most wide open and important areas for further

study.

5 Whither Now?

As we have seen, there is much that we know about the structure and use of social networks,

and a growing set of models to describe their emergence, roles, and importance in determining

social outcomes. At the same time, as alluded to at many points in the discussion so far,

there is so much that we have yet to understand or model. Let me provide a partial list of

some of what I see to be the most obvious and pressing issues for study.
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� The above discussion of how network structure a¤ects behavior illustrates that despite
the di¢ cult combinatorics faced in many applications, there is still much that we can

deduce. Moreover, the wide variety of settings where social networks play a role leads

to an almost endless set of interesting avenues to investigate. This continues to be one

of the more promising areas for the modeling of social networks, and should also prove

to be one of the main interfaces between theoretical and empirical work.

� One of the main points I made in the discussion of modeling of network formation is
that there is a great potential to combine ideas from random graph models of network

formation with those strategic formation models. These are largely complementary

models and there look to be substantial gains in producing hybrids, both in terms of

providing better �ts of observed networks and leading to a better understanding of the

tension between stability and e¢ ciency.

In many applications, it seems that an appropriate model would be one where the po-

tential opportunities to form links or social ties is where the randomness plays its major

role. This randomness might have structure to it, as for instance the opportunities that

we have for scienti�c collaboration are partly determined by where we work, whom we

have worked with in the past, which conferences we attend, coupled with a good amount

of chance meetings and conversations. At the same time, which opportunities appear

to be worth pursuing, and which ties and friendships we maintain over time, owe much

to the costs and bene�ts that they provide. Building models that tractably combine

these two features could also help produce models that lead to a deeper understanding

of the dynamics of networks and social relationships over time, something that is still

largely absent from the existing literature.92

� This also leads us to another aspect of network formation models that could be improved
upon. Existing models generally deal with link formation where the action takes place

at the link level. That is, either links are being randomly determined, or agents are

deciding which links they would like to form. However, in many social settings, basic

decisions are made that determine large sets of links all at once. For instance, the

decision of which university to attend determines one�s classmates and the decision of

where to work determines one�s colleagues, en masse. Models that deal with how such

larger decisions impact social network structure are virtually nonexistent, and yet this

is an essential part of what is often implied by the term �networking,�as used in the

92Jackson and Watts (2002) provide an evolutionary model where chances to form links are random, but

links are then formed strategically. However, they focus on the limit where the randomness becomes negligible.

Understanding the case before the limit, might serve as a basis for one model that encompasses randomness

and strategic choice.
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vernacular regarding building social relationships.93

� There are also many facets of existing network formation models within the existing
separate strands of random graph and game theoretic models that deserve further study.

�With regards to models of strategic formation, there are questions of how to ap-
propriately model equilibrium, given that the consent of parties might be needed

to form links. Are social relationships considered one at a time, or many at once,

and how does this depend on the setting? How coordinated are the decisions

among groups of agents? To what extent are bargaining and/or transfers part of

the process? Do agents take into account the impact their decisions will have on

the further evolution of the network? These questions have led to some recent

research on the foundations of modeling strategic network formation94, of which a

deeper understanding is needed.

�With regards to random networks, two things come to mind. First, it is clear

that there is great need for more detailed structural �tting of the models and that

this might help in the development of new models. For instance, as discussed

above, �scale-free�networks are at best an idealization and benchmark and that

only some observed degree distributions exhibit such features, and even then only

approximately and in one tail. Second, social networks exhibit much richer het-

erogeneity in the types of interactions and have correlation structures that are

not adequately captured by existing models. In particular, things such as ethnic-

ity, profession, and geography, produce neighborhood structures that are di¤erent

from those predicted in existing models. For example, Adamic (2005) provides an

interesting analysis of the cross-citation by political blogs. There are distinct sep-

arations between di¤erent political ideologies, with inter-ideological linking arising

on special occasions. Existing models have not really captured such features, and

it is clear that such features should be very important in in�uencing opinion.95

� Another area that is crying out for attention, and just beginning to receive it, is the
modeling of the strength of ties. The idea that social relationships are not 0-1 in their

nature is quite clear, and was the center piece of one of the most in�uential social net-

works papers - Granovetter�s (1973) article on the �strength of weak ties.� Granovetter

93See Ioannides and Soetevent (2005) for a �rst step in this direction. I should also mention that there is

a rich literature on coalition formation (e.g., see the book by Demange and Wooders (2004) and references

therein), which could end up playing a role in these developments.
94See, for instance, Calvo-Armengol and Ilkilic (2004), Bloch and Jackson (2004), Tercieux and Vannetel-

bosch (2004), Ilkilic (2005), Slikker and van den Nouweland (2005), Chakrabarti (2005), Page and Wooders

(2005).
95See Watts, Dodds and Newman (2002) for a model in this direction.
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pointed out the importance of weaker social relationships (according to various mea-

sures of the level and/or frequency of interaction) in providing critical information. This

work has produced volumes of empirical studies (e.g., see Granovetter (1995) and some

of the references therein). Yet, until recently there were only a few models (Boorman

(1975) and Montgomery (1991, 1992, 1994)) of how networks might form when both

weak and strong ties are possible, and both of these models were specialized to the

context of job contact networks. Recent interest in this subject has resulted in more

general studies (e.g., Rogers (2005), Bloch and Dutta (2005)) that investigate models

where agents decide on how much e¤ort or time to devote to their di¤erent relation-

ships. Such models look to provide interesting insights regarding how complementarity

or substitutability a¤ects the patterns of e¤orts that ensue. A related issue is that

relationships vary not only in their intensity, but also in their patterns over time. Inter-

action patterns tend to be sporadic. Understanding some of the timing of interactions,

and more basically what is entailed in a relationship, might help shed better light on

the di¤erences between things such as strong and weak ties and how they di¤er across

applications.

� As mentioned at the beginning of Section 3.2, the early models of how the allocation
of total value or bene�t among players depends on a network structure emerged from

the cooperative game theory literature. The perspective that cooperative game theory

(even with graph-restricted games) gives to this problem is not always rich enough to

address the issues that arise in a social network context (e.g., see Jackson (2005) for

a discussion of this point). It is also clear, that the formation of social relationships

often involves some bargaining. For instance, dowries are an obvious example. We have

seen above how such bargaining can be instrumental in determining how e¢ cient the

resulting network structure is. Yet, the models that we have, both from a cooperative

and a non-cooperative approach, are still far from giving us a full understanding of

how value is shared among members of a social group, how this is determined by the

network structure, and how this a¤ects network formation.

� As the investigations in network analysis continue to multiply, so does the need for
well-understood tools and methodology. For example, there are numerous measures of

how �central�a node is in a network, ranging from simple comparisons of node degrees

to detailed analyses of the eigenvalue structure of modi�ed adjacency matrices. Such

di¤erent measures are clearly identifying di¤erent facets of a node�s role in a network.

However, our current understanding of which (if any) existing measure is appropriate

in which context comes almost entirely from seeing how measures operate on various
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examples and then judging which seems to be capturing what we are after.9697

There are numerous other concepts in social network analysis that are associated with

a variety of de�nitions and measures, and little to guide us in terms of understanding of

the various properties that they possess. I am only aware of a few studies that examine

the properties of di¤erent measures and de�nitions used in social network analysis,98

while the extent of social network science clearly requires more.

� It is clear that the links that people maintain are di¤erent in nature. For example,
they might relate to friends, relatives, co-workers, neighbors, or casual acquaintances.

Each type of link might be active or useful under di¤erent circumstances, and might

involve di¤erent costs and bene�ts. Modeling the interaction between di¤erent over-

lapping network structures could potentially lead to new insights into things such as

the dissemination of information throughout a population. For example, as Granovet-

ter (1974) notes: �... much of the information about jobs that one receives through

contact networks is a byproduct of other activities, and thus not appropriately costed

out in a rational calculation of the costs and bene�ts of getting information.�99

� As predictions from models continue to proliferate, experiments will provide an increas-
ingly important testbed.100 This is especially true of things like the dissemination of

information, which can be very di¢ cult to pinpoint outside of the controlled environ-

ment of a laboratory.

� The rich collection of case-studies from the sociology literature is quite remarkable

partly because of the level of di¢ culty that researchers have historically faced in iden-

96See Borgatti (2003) for one study which tries to sort through some centrality measures.
97The same is true of identifying community structures in networks. A community structure is a partitioning

of the nodes of a network into groups or �communities�, with the idea that the nodes in the same community

are somehow similar or equivalent according to some criterion. This can be useful in terms of simplifying

a complex network into a simpler smaller network of relationships between communities, as well as learning

something from the network relationships regarding which nodes are similar. Many algorithms have been

developed to identify community structures in networks, and yet most of what we know about the relative

merits or de�ciencies of various approaches and algorithms comes simply from examining whether they seem

to give the �right� community structuring in various examples. An overview of some of this literature can

be found in Newman (2004b) and a discussion of the importance of identifying the properties for identifying

community structures can be found in Copic, Jackson and Kirman (2005).
98For example, see van den Brink and Gilles (2000), Gomez et al (2003), Monsuur and Storcken (2004), and

Copic, Jackson and Kirman (2005).
99 I thank Yann Bramoullé for bringing this quote to my attention.
100Here I am referring to experiments with human subjects, although the term experiments is also used in

some literatures to refer to simulations, often involving agent-based modeling techniques. These too are an

increasingly relevant tool as technology now enables us to work with much richer models in simulations than

we can handle analytically. See Kosfeld (2003) for some discussion and references.
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tifying network structures. This often involved interviews of subjects, or careful ob-

servation of some group over time, and limited both the scope and quality of the data

that could be collected. Advances in both telephony and internet communication (in-

cluding email), as well as computing technology, has recently made readily available

large, detailed, and precise interaction patterns; which in some cases are less prone to

measurement error and easier to work with. Moreover, such data sets give new dimen-

sions to network structures as they have detailed time-stamps with which to study the

dynamics of interaction. This greatly enhances the potential for empirical testing of

increasingly complicated network models, and should also enrich the stable of questions

for models to address.
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