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Abstract

This paper contributes to an emerging literature aiming to understand the behavioral pat-
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neous agents benefit from knowledge spillovers flowing through the network and bear the costs
of maintaining their direct links. Such costs increase with geographic distance over a ring on
which agents are located. We show that this simple model generates emergent networks that
share the main structural properties observed in most real social networks. Moreover, we bring
the model to co-invention networks data and find that the model fits quite well the data through
the various structural measures used. In particular, it provides a consistent explanation of the
observed asymmetry of neighborhood sizes and of the high concentration of connections in local
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1. Introduction

There is an increasing consensus in the economic literature to recognize that network struc-
tures significantly influence the outcomes of many social and economic activities. As recently
highlighted in the theoretical economics literature, such networks are also often strategically
shaped by the participating agents.! Nevertheless, this literature has not yet dedicated much
attention to the full characterization of the endogenous networks and, most importantly, to the
strategic conditions that may lead to the emergence of networks that might resemble real net-
works which are much more complex than the structures usually discussed (such as the empty

network, the complete network or even the complete star network).

A series of recent contributions showed that most social networks, though they are heteroge-
neous in many respects, share some common structural features. Real networks generally have a
very large connected component that links directly or indirectly most agents while a restricted
proportion of agents remain within disconnected subsets. These networks are also proven to
be very short in the sense that, when counting the minimal number of inter-individual social
connections (that is the social distance) between them, agents are found to be in average very
close the one to the others. In the meantime, these networks are highly clustered, by which it
is meant that there is a high probability that an agent’s neighbors are also neighbors together
(Watts and Strogatz, 1998). It has also been shown that agents are highly unequal with respect
to the size of their neighborhoods : few agents have many connections while many agents have
few links (Barabasi and Albert, 1999). Without a clear consensus in the literature, networks
that exhibit some or all of these properties are often called small world networks. Finally, very
recently, some authors started to study the spatial structure of networks and to show that some
networks tend to correlate with geography (e.g. Gastner and Newman, 2006, on communication

networks).

It is still a challenge on the agenda to understand the social and economic conditions that lead
to the formation of networks that exhibit such structural properties, and beyond, to explain the
various structural attributes of eventually more specific social networks. In fact, several models,
which incorporate, in various extents, randomness and ad-hoc settings in the formation of links,
have been introduced so as to find out the main factors that lead to the formation of complex
networks.? Nevertheless, none of these models accounts for the strategic formation of social

networks.

In this paper, we make a first step in this direction by confronting the strategic approach

of network formation with social networks data. We try to appreciate the extent to which

'Models of strategic network formation encompass various contexts such as imperfect information diffusion
in networks (Jackson and Wolinski, 1996 ; Bala and Goyal, 2000), job-contact networks (Calvé-Armengol, 2004),
oligopolies and R&D collaborations (Goyal and Moraga, 2001; Goyal and Joshi, 2003), buyer-seller networks
(Kranton and Minehart, 2000), etc.

2 Among these contributions, Jackson and Rogers (2007) have proposed a model in which agents are attached
to other agents in two manners. Some neighboors are picked at random among all other agents while some others

are picked by searching locally through the current structure of the network.



the structure of interpersonal research collaborations can result from a decentralized process
of strategic network formation. So as to mimic in a simple and stylized manner the impact
of inter-individual collaboration networks on individual payoffs, we rely upon a variation of the
connections model (Jackson and Wolinsky, 1996). Agents benefit from positive externalities from
other agents given that there exists at least a sequence of continuous inter-individual connections
between them on the relational network. Moreover, the strength of the positive externality
decays geometrically with social distance. This model seems particularly relevant if one aims to
describe knowledge networks since the positive externality can account for knowledge spillovers
and there is a decay parameter that tunes the quality of knowledge transmission through the
network connections. The kind of knowledge the transmission and impact of which this model
intends to capture, is all together sensitive, advanced and mainly tacit. Such knowledge is usually
"naturally" disclosed to the selected direct individual partners in the research process : if a link
exists, then it is (imperfectly) conducive to knowledge transmission.? These features of knowledge
transmission in inter-individual collaboration networks are consistent with the very recently
available empirical evidence which show that inter-individual connections are the support of
knowledge spillovers and that the probability of observing a knowledge flow decreases sharply
with social distance between individuals (e.g. Breschi and Lissoni, 2006a and Singh, 2006).

Our model further introduces geography in a very simple and stylized way. Agents are assu-
med to be located at equidistant intervals on a circle of a given dimension. As in Johnson and
Gilles (2000) whose world is linear, we assume that link formation costs increase linearly with
geographic distance. This feature stresses a specific impact of geography on network formation,
that traces back to Debreu (1969), and the empirical applicability of which seems not to have
been reduced by the generalization of the communication technologies (see Gaspar and Glaeser,
1998). The underlying assumption is that geographically distant research collaborations are as
effective as close connections per se but do impose more monitoring and costly interactions to
be achieved. Another feature of our model lies in the introduction of agents’ heterogeneity in
their ability to sustain direct connections at given costs. Finally, the strategic formation of net-
works occurs in a dynamic process close to the one introduced by Jackson and Watts (2002).
A numerical methodology is presented, which has been first introduced in Carayol and Roux
(2004, 2006), which allows us to obtain stable networks in the long run.

Very few data are available to track inter-individual research collaboration patterns in a
reliable, systematic and quantitative manner over a long period of time. Our empirical evidence
is based on the relational information contained in all European Patent Applications, at least
one inventor of which declared an address in France and which occurred over the period 1977-
2003.* We build the co-invention network by allocating a connection between two individuals if

they both appear among the inventors of the same patent, at least once. A connection in this

3Thus our approach do not aim to model the strategic disclosure of knowledge on the top of the strategic

formation of networks, a feature that would be more relevant to stress collaborations between organizations.
“The data, nicely provided by Francesco Lissoni, are an extraction of the EP-INV database produced by

CESPRI-Universita Bocconi.



network reveals a strong and deliberate collaboration between two persons. We believe that this
is a restricted but acceptable manner to evidence research collaborations, which are the support
of advanced and sensitive knowledge transmission. From a methodological point of view, the
procedure is similar to the one performed for measuring scientific collaboration networks from
data on co-authorships of scientific publications (Newman, 2001, Barabasi et al. 2002). Very
recently, Goyal et al. (2006) also apply this method to study the scientific collaboration networks
in economics from papers co-authorships relying upon Econlit database. Our dataset counts more
than 114,000 patents, invented by nearly 98,000 inventors among which more than 76,000 have

invented a patent with at least one other French inventor.

Our main results are the following. We show that the theoretical model generates networks
that share the standard properties of social networks. More precisely, for a large range of in-
termediary values of the decay parameter that tunes the strength of the positive externalities,
the four properties that characterize small world networks are observed. Next we provide a first
global analysis of the whole French co-invention network. Given its high level of disaggregation
in components, we propose a within-components methodology to compare empirical with theo-
retical networks. We find that they present close structural measures. Moreover, most of the
predictions on the effects of the different parameters (such as population size or geographical
dimension) on networks structure are corroborated in the data. The theoretical model also gene-
rates emergent networks whose degree distribution is highly right-asymmetric in a comparable
extent as in empirical networks. Lastly, the theoretical model shows that most connections are
formed in the local geographic environment while still a few distant connections are formed, a

shared property with the empirical co-invention networks.

The paper is organized as follows. The next section presents the model of network formation.
Section 3 presents a series of results on the structure of emergent networks as compared to the
standard properties that real social networks share. Section 4, presents the data and compares

the (theoretical) emergent networks with the empirical networks. The last section concludes.

2. The strategic formation of inter-individual research collabo-
ration networks

In this section, we begin with basic notions on non directed graphs. We then introduce our
model and discuss the individuals’ incentives to form collaborative links. Finally, we turn to the

dynamic perturbed process that leads to networks formation.

2.1 Networks

We consider a finite set of n agents, N = {1,2,...,n} with n > 3. Let ¢ and j be two
members of this set. Agents are represented by the nodes of a non-directed graph the edges of
which represent the links between them. A link between two distinct agents ¢ and 7 € N is
denoted ij. A graph g is a list of non ordered pairs of connected and distinct agents. Formally,

{ij} € g means that ij exists in g. We define the complete graph ¢ = {ij|i,5 € N} as the
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set of all subsets of N of size 2, where each player is connected with all others. Let g C g% be
an arbitrary collection of links on N. We define G = { g C gV } as the finite set of all possible
graphs between the n agents. The empty graph, denoted g@7 is such that it does not contain any
links.

Let ¢ =g+ij=gU{ij} and ¢ = g —ij = g\ {ij} be respectively the graph obtained by
adding 77 and the one obtained by deleting 77 from the existing graph g. The graphs ¢ and ¢
are said to be adjacent as well as the graphs g and ¢”. Let a path in a non empty graph g € GG
connecting 7 to 7, be a sequence of edges between distinct agents such that {149,973, ..., 15175} C
g where i1 = 1, 3, = j. Let 1 «<—, 7 be the set of paths connecting ¢ and 7 on graph g. The set of
shortest paths between i and j on g noted i<——,j is such that Yk € i< ,j, then k € i «—, j
and #k = minpe; - ; #h. The geodesic distance between two agents ¢ and j is the number of
links of a shortest path between them : d(i,j) = dy(i,j) = #k, with k € i—,j. When there is

no path between ¢ and j then their geodesic distance is conventionally infinite : d(i, j) = oo.

For any g, we then define N(g) = {i|3j:4j € g}, the set of agents who have at least
one link in the network g. We also define N;(g) as the set of #’s direct neighbors, that is :
Ni(g) = {j|ij € g}. The cardinal of that set 7;(g) = #Ni(g) is called the degree of node
i. NX(g) = {j|j#1, d(i,j) <2} is the set of agents who are either directly connected or
indirectly connected at distance two to i. The total number of links in the graph g is n(g) = #g.
Let us denote f(g) = 1 ZiGN n;(9) = 2n(g)/n, the average degree of g. A network g is said to
be connected if for any pair of distinct agents i,5 € N(g),i <4 7 # 0. A component C is a
subset of N(g) such that for any pair i, j € C, ¢ # j, i <, j # 0 and, for any i € C' and k ¢ C,
i «—4 k= (. It follows that the set of non isolated agents N(g) is such that N(g) = Up—1,.. x Cj,

with K the number of components Cy, k=1, ..., K.

Finally, let us assume that agents are equidistantly located on a circle. Without loss of genera-
lity, agents are ordered according to their index, such that ¢ is the immediate geographic neighbor
of agent ¢ + 1 and agent ¢« — 1 but agents 1 and agent n who are neighbors since they close the
ring. We then define a operator denoted I(%, j) that simply counts the number of inter-individual
intervals on the ring separating ¢ and j. It is given by I(¢,7) = min{|i — j|;n — |i — j|} . Now
assume that the maximum geographical distance on the circle is given by S (the geographi-
cal dimension of the circle). Then, the geographic distance between ¢ and j is simply given by
sij = 1(i,5)S/ [n/2],® with [n/2] the smallest integer higher than or equal to n/2. S/ [n/2] can

be viewed as an inverse measure of the density of the population.

2.2 The model

We now propose a simple model of strategic formation of inter-individual collaboration net-
works which intends to capture the impact of knowledge diffusion in networks on agents payoffs.
We assume that interpersonal connections are conducive to knowledge or ideas diffusion. In the

spirit of Jackson and Wolinski (1996), we consider that agents benefit from their costly direct

®In the circle metric, the maximum number of interindividual connetions is given by : maxi jen L(4,7) = [n/2].



connections but also from indirect links through the relational neighborhood of their partners.
Let us consider how agents derive payoffs from their position in the relational network. We

propose the following individual payoff function :

() = d(i,j) _ iy
i (9) ZjeNf(g) ’ ZjeNi(g) i @

The first argument of the payoffs accounts for the gross payments one agent gains from
knowledge diffusion through its direct or indirect connections, assuming no time lag for simplicity.
There is a decay parameter § €]0;1[ which gives the share of knowledge effectively transmitted
through the direct or indirect connections. It is thus a decreasing function of the geodesic distance
since § is less than the unity. It may be associated with the characteristics of knowledge :
communication quality is likely to decrease with the degree of tacitness of knowledge while
it would increase with the codification of knowledge. Moreover, we consider that knowledge
spillovers only play at geodesic distance equal to two. Thus agent ¢ benefits from agent j if
they are directly connected or indirectly connected at distance two (formally, j € Nf(g) or
d(i,7) < 2).° The empirical evidence on knowledge spillovers from patent citations support
these assumptions. In particular, Singh (2005) and Breschi and Lissoni (2006a) showed that the

probability of patents citations decreases sharply with social distance between patents inventors.

The second part of the right hand side of equation (1) describes the costs of sustaining direct

links, with each direct link costing c¢;; to 7. The cost of each direct link is given by :

Cij = a;Sij = a l[iz}‘;% S. (2)
Agents are assumed to be heterogeneous in their link formation costs in the sense that the pa-
rameters a; are independently distributed according to the uniform distribution Vi € N(g), a; ~
Ula,a] with strictly positive support and so that its mean equals unity : (@ —a) /2 = 1. This
implies that the costs supported by two agents to be linked together may differ due to agents’
heterogeneous abilities (¢;; # ¢;;). Moreover, we assume that the costs linearly increase with
the geographic distance separating agents on the circle metric s;;. The assumption according to
which link costs increase with distance can be justified by the fact that closely located agents
incur lower costs to establish communications (Debreu, 1969) and to coordinate. Indeed, when
agents are geographically distant, face to face interactions imply higher transporting costs and

time.” Moreover, geographic distance could also generate higher monitoring costs (e.g. Lerner,

1995).

6This specification departs from the simple connections model introduced by Jackson and Wolinski (1996) in

which spillovers are still effective at any finite geodesic distance.
"This seems to still hold despite the introduction of Internet technologies since they are complementary to face

to face interactions (Gaspar and Glaeser, 1998).



2.3 Incentives to form bilateral connections

We now turn toward the formation of networks. It is assumed that the relational network
emerges from the willingness of agents to form links in order to benefit from knowledge flows. As
a consequence, agents try to maximize the value generated from direct and indirect connections,
avoiding superfluous connections. Nevertheless, agents are myopic in the sense that they take

their decision on the basis of the immediate impact of this decision on their current payoffs.

Let us examine the individuals’ incentives to form direct connections that are the expected
reward an agent ¢ would get in forming a connection with some other agent j, Ax; (g,47). For
that purpose, we define Nij(g) = N2(g) N (N;(g) U{j}) the set of agents who are both at a
distance less or equal to two from agent ¢ and in the direct neighborhood of agent j, including 7
himself. Notice that ]Vij(g) # ]Vﬂ(g) Let 7;; (g) be the cardinal of this set. We then define the

function A, (-, -) as follows :
Ami(g,i5) = mi (g +15) = mi (9) = 3+ (1; (9) =75 (9)) — aisij: (3)

The incentive of agent i to form a link with j increases with the decay parameter 4, with
the size of j’s relational neighborhood 7; and decreases with ﬁij (9) which accounts for the
overlapping of the two agents’ neighborhoods (from #’s point of view, since 7;; (9) # 1;: (9))-
Thus there is a disincentive to form a link with an agent who is already connected to some
other agents whom one already benefits from (and thus to form triangles). It also decreases
with agent ¢’s idiosyncratic costs to sustain connections a,;, and with the geographic distance
separating ¢ and j on the circle metric s;;. Through the geographic distance (reminding that
sij = U(¢,7)S/ [n/2]), S plays negatively on incentives since n is held constant, it decreases the
density of agents on the geographical space and thus increases the link formation costs. On the
opposite, incentives increase with n since, S being held constant, the larger the population, the
greater the agglomeration of agents (agents are closer the one to the others on the circle metric)

and so the lower the costs.

2.4 Dynamic network formation

Following Jackson and Watts (2002), we assume that, at each period, two agents ¢,7 € N
are randomly chosen with a given constant non null probability p. If these agents are already
connected, they consider whether they may unilaterally severe the link or bilaterally keep it. If
they are not directly connected, they consider whether they should add this connection or stay
disconnected. As in Jackson and Wolinski (1996), we assume that the formation of a link between
two agents requires the consent of both of them, but not its deletion, which can unilaterally
emanate from one of them. Formally, writing ¢; the network at discrete time period ¢, the
dynamic process can be described as follows :

i)if ij € g1, 1 € gey1 it Amy (g —47,14) > 0 and Am; (gr — ij,i5) > 0,

i) if ij & g1, 7 € gi1 it A (gr,47) > 0 and Anj(ge,77) > 0 with a strict inequality for at

least one of the two agents.



Small but non vanishing random perturbations affect agents’ decisions in creating, main-
taining or deleting links. These perturbations may be understood as mistakes or as random
experiments. We propose to let such an error term decrease in time according to the following
simple rule :

e =1/(t+1)+5 (4)

This rule ensures that a significant noise affects the dynamics in the beginning while it decreases
monotonically with time down to a small strictly positive limit : lim; o, g = 2. Agents are likely
to make less and less errors through time though still a very small error probability persists in

the long run.

The evolution of the system at any time ¢ only depends on the present state of the system
given by the graph structure g;. The stochastic process is thus Markovian. The evolution of the
system {g;,¢ > 0} can be described by the time-varying probability matrix (P(s;)) describing
the one-step transition probabilities at each period ¢ between all possible states of the finite state
space (. According to Robles (1998), the long run equilibrium ¢ (2) of such time-inhomogeneous
Markov chain exists, is unique and is equal to the equilibrium of the Markov chain perturbed by
the constant error .° It is then ergodic. This property is interesting since it renders numerical
experiments more tractable in order to examine with good confidence the long run behavior of
the system (Vega-Redondo, 2006). We label the networks on which the process stabilizes in the
long run as emergent networks. The definition follows.”

Definition 1 A network g € G is emergent if its probability of occurrence (¥ ,(€)) in the long run
equilibrium of the stochastic process described by the transition matriz P(st) is strictly positive.
The set of emergent networks is G= {g e lwg(E) > 0},

3. The structure of emergent networks

In this section, we analyze the structure of the emergent networks formed under the model
described in equations (1) and (2) and selected by the stochastic process presented in the pre-
ceding section. We first provide some measures of the network structures that have been mainly
used to characterize empirical social networks. These statistics are then used to characterize the
architecture of the (theoretical) emergent networks for various values of the model parameters.
Of particular interest to us, are the conditions under which the networks that formed would

share the properties of many real social networks.

¥See Proposition 3.1 of Robles (1998, p. 211).

®Notice that the set of emergent networks is broader than the set of stochastically stable networks (Young,
1993) which is included in G (cf. Definition 1). If we label 4 () the (unique) stationary distribution of the time-
homogeneous markov chain associated with transition matrix P(£), this claim is formally : for all g such that, if
limz—o 1, (€) > 0 then ¢ B (€) > 0. This can be easily proved by recalling the Freidlin and Wentzell (1984) theorem
that states : Vg, ¢, (€) = p,(€) is of the form ¢ (2) = v, )/ Eg, vy (€) with vy (2) a polynomial in €.



3.1 Measuring networks

To study the structural properties of emergent networks, we compute several dedicated sta-
tistics. The first index is the average distance (or average path length) between any two (directly

or indirectly) connected agents of the network. It is given by :

d(g) = Do D (6 7) X Wi g 5 # 0}
#{i,jli #jENiogj#0}

if n(g) > 0, with # {-} denoting the cardinal of the set defined into brackets and 1{-}, the indi-

cator function that is equal to unity if the condition into brackets is verified and zero otherwise.

(5)

This index allows us to appreciate the extent to which directly or indirectly connected agents

are distant in the relational network.

The second index is the average clustering. It indicates the extent to which neighborhoods
of connected agents overlap or, in other words, the propensity with which the neighbors of an

agent are also neighbors together is high. It is given by :

1 #{ilegli#leNilg)}
c(g) = > # {11 #£5€Ni(9)} ~

(6)

€N, (9)>1

The two indicators presented above are affected by the average degree of the network (7(g))
that is likely to vary with ¢ and the other parameters of the model. Therefore, these indicators are
somehow biased and we must find an efficient control for average degree.!? In the spirit of Watts
and Strogatz (1998), we associate control random graphs to emergent networks characterized
by the same number of agents and links (and thus by the same average degree). Such random
networks are simply built by allocating a given number of edges to randomly chosen pairs of
agents (Frdss and Rényi, 1960). For each given number of edges of emergent networks, the
average distance and the average clustering are numerically computed and averaged over 1,000
of such random graphs. Thus, instead of looking at ¢(g), where g is an emergent network, we
compute the ratio ¢(g) = c¢(g) /¢ (¢"*) , where ¢ (¢"*) denotes the mean average clustering of the

1,000 random networks that have exactly the same average degree as g. Similarly we compute
d(g) =d(g)/d(g").
Those two ratios can be used to define the small world property a la Watts and Strogatz

(1998).11 Such a structure is characterized by the two following properties :

Z(g)>1 and d(g) =~ 1. (7)

10For instance, it is easy to see that the density of network affects crucially the average distance of the networks :
more dense networks are likely to exhibit a shorter average path length. Without any control for density, one cannot
know whether a network is shorter thanks to the structural allocation of links or simply thanks to a higher density.

This is also true for the average clustering.
UWatts and Strogatz (1998) presented an experiment allowing to build small world networks by rewiring a

given proportion of edges from an initial regular lattice and reallocating them randomly. Notice that their aim

was not to model how such networks are formed by the agents’ decentralized behaviors.



This means that small world networks are simultaneously highly clustered as compared to ran-
dom graphs and that their average distance is close to the one of random graphs which are

known to exhibit very short average path length.

Though it has been proven that most real social networks are small worlds & la Watts and
Strogatz, two additional properties have also been emphasized in the literature as commonly
observed in social networks. The former is the existence of a very large component, the size of
which is much larger than the size of second largest component. More its size is often approaching
the size of the whole population (Newman, 2001). The last property is a high inequality in the
size of agents’ neighborhoods : few agents have many connections while many agents have few
links. Such a property can be studied using the distribution of the nodes’ degrees in a graph g,
p(k), defined as the fraction of agents having & links in g. It is defined as :

1

(CEFPIRUELY ©
for all k =0,...,n — 1. Again, if links where allocated fully randomly, we know, since Erdos and
Rényi (1960), that this distribution would be Poisson and consequently its variance would be
equal to its mean, which is the average degree 7j(g). On the contrary, most real networks exhibit
a long right tail that is a very unequal distribution of links among agents.'> A usual manner to
compute the asymmetry of a distribution is by relying on its Gini coefficient. Assume agents are
given new indexes given the relative size of their neighborhoods so that ¢ < j iff n; < ;. Then,

the Gini coefficient is given by :

Gi(g)=1- Y. p(ni(g))(Q;i(éJ;)+9¢1(g))7

i=1,...,n

with 0;(g) = >, i p(n;(9)) n;(9) and bo(g) = 0. Tt is equal to twice the area between the
Lorenz curve and the 45° straight line crossing the horizontal axis at zero. Notice that, if all
agents have the same number of nodes, that is agents are all equal, then the Gini coefficient is

null. When inequality is maximal, then the Gini coefficient equals one.

3.2 Results

The various statistics are computed on networks that are on the support of the unique
limiting stationary distribution (g), obtained through a series of numerical experiments.'® In
order to provide some intuition on the impacts of the various parameters of the model, we

consider three population sizes (n! = 20, n2 = 50 and n3 = 100), as well as two geographic

12As a matter of fact, since Barabasi and Albert (1999), many scholars have demonstrated that the degree
distribution of social networks can be approximated by a power law. See the next section and Table 2 for such an

application on co-invention empirical data.
13%We also fixed the limit error term Z to 10 *. Moreover, all experiments are stopped at 7" = 20,000, period

after which the process is proven to have surely stabilized on a given pairwise stable state with this model. A
network is said to be pairwise stable if no incentive exists for any two agents to form a new link or for any agent
to break one of his existing links (Jackson and Wolinski, 1996).

10



sizes (S = 1 and S? = 2) and two amplitudes for agents’ heterogeneity (a; ~ U[0.5,1.5] and
a; ~ U[0.1,1.9]). Notice that, since the means of the a; are by definition always equal to unity,
the two distributions only differ in their variances, and so we will refer to the two heterogeneity
distributions with respect to their standard deviation o' and o2 (with 02 > o!). It would
be cumbersome to present the twelve configurations of the different values of the parameters.
Since it is likely that when n increases, both the heterogeneity of the population and the size
increase, and since the remaining configurations do not bring more relevant information, we will
limit the exposition of our results to the following four configurations of parameters values :
(nl, St 01), (nQ, St 01), (nQ, 52, 02) and (n3, 52, 02) . Finally, for each of these configurations,
1,000 simulations are performed with randomly drawn values of § € |0; 1] so as to fully explore

the impact of d on the structure of emergent networks.

The ratios (¢(g) and d(g)) as well as the Gini coefficient Gi(g) and the average degree (71(g))
are plotted in Figure 1. We can observe that the architecture of emergent networks strongly vary

with the parameters value.

When § is very close to zero, emergent networks are empty and thus their average degree
7(g) is null. A very high value of the Gini coefficient is obtained when delta is small and both
heterogeneity and the geographical dimension of the ring (5) are high because then many agents
remain not connected while a few have some connections. Inequality is then very high since a few
agents accumulated all the graph connectivity. It is only in these configurations that the model
generates isolated agents and eventually several components. Otherwise, all agents always belong
to a unique component. As § increases, the incentives to form collaboration links also increase and
so does the average degree. The average distance ratio reaches a maximum value when ¢ =2 0.1.
Networks are then only locally connected since the incentives to form distant connections are
not sufficient. As a consequence, it takes in average many inter-individual connections to reach
some other agent potentially located far in the geographical ring. This also explains why a very
high clustering ratio is then reached (despite the disincentive to form triangles) : agents connect
to their nearest geographical neighbors and so clustering is achieved in the local geographical

areas.

When 6 increases from 0.15, the average distance ratio straightly decreases to become equal
or below unity at values of § which range from 0.2 to 0.35 depending on the parameters. For
these values of §, the clustering ratio also decreases, but in a much smoother slope. The average
clustering of emergent networks still ranges there from two to six times greater than the clustering
of their random graphs controls. Thus, in this region of §, the property expressed in (7) is clearly
verified. A small world property & la Watts and Strogatz is obtained since some agents find
sufficient incentives to form (geographically) distant connections. These agents, who are also
much more densely connected than others, are likely to be precisely the ones who bear the lower
individual costs of forming links (a;). It is interesting to notice that increasing simultaneously
agents’ heterogeneity and S preserves a high clustering. Nevertheless, as Figure 2 illustrates, this
high clustering tends then to be achieved in different manners depending on these parameters.

When o and S are high, it is more the intermediary of some central agents that allows the
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overlapping of neighborhoods since local agents are now only minimally locally connected (only
connected to their two nearest neighbors). When ¢ and S are lower, the high clustering is rather
due to the overlapping of local connections. In all configurations of n, ¢ and S, it is in this
region of § that the Gini coefficient is the largest if we do not consider the region § < 0.15.
Therefore we can conclude that when § ranges from 0.2 to 0.35, the four standard properties
that characterize a small world (small average distance ratio, large clustering ratio, existence of

a very large component and a high inequality in degrees) are verified.

When ¢ increases again from 0.35, the average distance ratio remains below unity while
the average clustering ratio still decreases. Indeed, the more § approaches the unity, the more
62 tends to §, and so the stronger the disincentive to form triangles. This also explains why the
average degree tends to stabilize or even to decrease either when the population is not large,
or when the heterogeneity and the geographical dimension are low. Indeed, as § increases, the
incentives to form connections and the disincentives to form triangles increase simultaneously,
each affecting average degree in an opposite manner. When either n, or ¢ and S are high, the
disincentives to form triangles are less effective because the formation of connections is then more
specific to individuals and less sensitive to variations in §. As a consequence, the region of § for
which the four properties that characterize a small world are obtained tend to be larger when
the geographical dimension and agents’ heterogeneity are greater. For instance, when S = 52,
and o = o2, not only the Gini coefficient remains high (thanks to the high heterogeneity) but
also does the average clustering ratio up to § = 0.7. Lastly, as expected from the incentives
to form connections given in equation (3), the density is greater when the population is larger
and when the geographical size is smaller. This simply derives from the fact that costs of link
formation depend crucially on the density of the population on the geographical space : either if
one reduces the geographical size of the ring, or if one increases the number of agents, agents are

geographically more proximate the one to the others and thus link formation costs are reduced.

4. Are inter-individual collaborations strategically formed ? Evi-
dence from co-invention networks

The aim of this section is to investigate whether our model of inter-individual collabora-
tions formation offers acceptable predictions of some observed empirical patterns. Few data are
available to realize such an experiment. Our application concerns the network of French co-
inventors, built from patent data over a 25 year period. As for the study of the structure of
scientific collaboration networks from data on co-authorships of scientific publications in given
fields (e.g. Newman, 2001, Goyal et al. 2006), one can consider inventors as connected nodes
(i.e. collaborators) in a non directed relational graph if they have co-invented a patent together.

This appears to us to be a stringent but reasonable definition of research collaborations.™*

4Tndeed, we can suppose that people who have co-invented a patent really and deliberately work and collaborate
together. Of course, not all collaborations lead to invention and not all inventions are patented. Nevertheless, we
can suppose that if a research collaboration is strong, if it lasts over a significant period of time and if research

occurs in a patenting domain, then it nearly always leads to a patent.
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The detailed study of the structural properties of co-invention networks, which remain igno-
red, should allow us to appreciate whether collaboration networks may have been strategically
built by agents as described in the theoretical model presented in Section 2. For that purpose, the
global structural properties of the (empirical) co-invention networks are first examined. Next, a
methodology is developed to compare emergent (or theoretical) networks to empirical ones. This
methodology can be designated as a within-components approach according to which agents’
strategies can be, to some extent (and given a selection of -non active anymore- components),
understood independently of the agents that do not belong to their component as they are in the
theoretical model. A specific focus is made on within-components degree distribution as well as
the relation between networks and geography. Moreover, we restrict our attention to the value

of the delta parameter for which realistic properties of emergent networks are obtained.

4.1 Co-invention networks

Our empirical evidence is built upon all European Patents Applications, at least one inventor
of which declared an address in France, and the priority date of which is between January 1977
and August 2003 included.'® All non French inventors of these patents have been dropped
so that our evidence is limited to France. The dataset counts 97,966 inventors of more than
114,000 patents. Among these inventors, 76,612 agents have invented a patent with at least
one other French inventor. The co-invention network is constructed by allocating links between
any pair of agents who have invented at least one patent together. Table 1 provides some basic
statistics of this network. Beyond such global statistics, a standard way to grasp a network
structural properties relies on a detailed analysis of its degree distribution. Remember that
social networks are proved to exhibit a high inequality in neighborhood sizes and that heavy
tail degree distributions such as power law distribution are usually found (Barabasi and Albert,
1999). Figure 3 presents the histogram of the distribution and Table 2 the power law estimates

of degree distribution of the population of non isolated inventors.

Patent data mention the personnal addresses of inventors. We were thus able to locate in-
ventors on the metropolitan French area thanks to the matching of the post codes mentioned
in their addresses with their corresponding latitude and longitude coordinates'®. Nevertheless,
inventors may have different locations : up to 11,970 among the connected inventors have de-
clared at least two different addresses. Note that this number might be overestimated since an
inventor may be abusively recorded as being located in two different places just because two
different writings were used for the same address. Most geographically mobile inventors remain

in the same area : nearly 79% (86%) of mobile inventors have a maximal distance between their

15These data are an extraction of the EP-INV database produced by CESPRI-Universita Bocconi. These data
have been treated for dealing with the homonymy of inventors’ names. The procedure was performed in three
successive steps : 1) standardization of names and addresses and attribution of an inventor code for a unique
surname, name and address; 2) computation of similarity scores for all possible pairs of inventors with the same
names and surnames but different addresses, 3) identification of a threshold value of the score over which two

inventors are considered as the same inventor. For more details on the data see Lissoni et al. (2006).
16 Those coordinates were nicely provided to us by the IGN (Institut Géographique National).
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different locations which is less than 20km (50km).

The euclidian geographical distance can be computed for any pair of addresses given their
coordinates (latitude and longitude). Since some agents change location, more than one distance
can be associated to a pair of connected agents : some agents invent several times with the same
co-inventor while at least one of the two changed address in between. Thus, behind the 134, 224
direct connections between agents, one effectively records nearly 150,000 distances between
co-inventors. We apply the distributional approach to study the geographic organization of
connections, that is the extent to which direct relations correlate with geography. We observe
that the distribution of connections according to the geographic distance between connected
agents is very skewed. More than 75% of the connections are achieved between inventors that
live at less than 50 km from each other while less than 4% of the connections are formed
between agents who live at more than 550 km from each other. Figure 3 presents the (properly
weighted for multiple countings) histogram of the distribution while power law estimates of the

distribution are exposed in Table 2.

It should also be noticed that the largest component of the network counts 43.92% of the
population'” (34.35% if we include isolated individuals) which is a relatively low proportion as
compared to other social networks. As a point of comparison, the largest component of scientific
co-authorship networks rarely include less than 70% of the population (see for instance Newman,
2001 and Barabasi et al. 2002). Nevertheless, these studies always focused on given scientific
domains and disciplines (for instance medicine, condensed matter physics or computer science).
Such a low proportion can also be partially explained by a lower density of the network.'® One
can also argue that technological knowledge may be more fragmented as compared to scientific
knowledge. Furthermore, the institutional configuration could generate a higher fragmentation
of the population of inventors as compared to authors who evolve in a more open scientific mode
of knowledge production. When applying the distributional approach to components, we find
that the distribution of components with respect to their population size can be fitted by a power
law distribution (see estimates presented in Table 2). The following subsection investigates the
possibility that, though the global analysis remains relevant, there might be some interest in

having a component based approach.

4.2 A within-components methodology for comparing theory with empirical data

We now address the issue of the structural comparison between empirical and theoretical
emergent networks. To be compared with emergent networks, we are in need of co-invention
networks that might have been generated in a similar context. The main problem faced then is

the following. In the theory, a population of n agents is given. The agents deal at one time or

1"Breshi and Lissoni (20064a,b) find that the largest component of the co-invention networks is 16% of the Italian
inventors of European patents recorded over 1978-1995 and 46% of the US inventors of European patents recorded
over 1978-1999.

18Tt is a well known property of random as well as scale free networks that increasing network density non

linearly leads to the emergence of a "glant component" which tends to encompass nearly all the population

(Erdés and Rényi,1960).
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the other, and probably several times, with the eventuality to connect with any of the n — 1
other agents. In the empirical data, since the co-invention network is not restricted ex ante to
a specific domain or institution, it is clear that not any agent may have been connected with
any other. Agents belong to subsets within which they may be connected the one to the others
whereas establishing connections between subsets is very unlikely. Nevertheless, it is very difficult
to clearly identify separate subsets of agents from the rest of the population. If this was fully
observable, agents’ behaviors could be explained by only considering the eventuality of forming

connections with other people within a given subset.

To deal with this problem, an obvious way is to rely on the observed allocation of agents
in components, assuming that agents of a same component are, for some unobserved factors,
more likely to be isolated from people outside the component. But a typical error can then
be made : some agents belonging to different components, though they did not yet, might
have been connected to each other and will probably be connected in a soon future. If this
happens, agents’ strategies would be incorrectly perceived. In order to reduce as much as possible
this potential measurement error, we only analyze components that exhibit inertia in the last
years of observation. Namely, we keep only components that experienced no link creation in the
last two years of observation (2002-2003). These components are assumed to have reached an

equilibria.'?-2

Components of small population size are not relevant for a detailed within-component struc-
tural analysis. Thus all components of population lower than 15 are dropped. Among the 194
components of size n > 15, 129 exhibited inertia over 2002-2003 (the procedure drops out the
largest component). After these elimination procedures, only one component is of population
size greater than 70 inventors. We thus restrict to components of size around n' = 20 agents
(15 < n < 25) and around n? = 50 (30 < n < 70)2!. We are also interested in the potential
impact of geography on network structure which, in the model, is assumed to increase links
formation costs. For that purpose, a maximal geographic distance between any two agents of
each component is computed. When agents have several addresses, one of them is picked at ran-
dom. Such a measure can be considered as the FEuclidian equivalent to the parameter S which
appears in the theoretical model. Inventors, are split into two subsets according to the fact that
their components have S lower or greater than the median S.22 Notice that these two subsets

of components do not differ significantly in their number of agents : mean number of agents is

19Such observed stability is not fully equivalent to the long run equilibrium that theoretical emergent networks

reached. Nevertheless, the long run observations are not available in the data.

20Tt should also be acknowledged that two or more components might persistently remain separated though no
barrier of any kind would prevent connection between agents belonging to different components. Even though it
is not possible to completely avoid this eventuality, theoretical results however tend to suggest that it is quite
unlikely since separate components are rarely found in the emergent networks and only for extreme values of the
parameters (when ¢ is very close to zero).

2! The mean number of agents in the components are slightly different than n! and n? : 19.20 and 44.25.

22The median maximal geographic distance for all components of size around 50 is S = 640 kilometers. This
means that half of the population belong to a component whose maximal geographical distance found among all

pairs agents in this component is less than 640 kilometers.
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44.63 when S < S and 43.79 when S > S.

Finally, as regards theoretical networks, since all agents belong to a single connected com-
ponent (if 4 is not too close to 0), we simply compute emergent networks whose size corresponds
to the one of the selected empirical component (nl =20, n? = 50). The two geographical sizes
(S1 =1 and S? = 2) and the two standard deviations ¢! and o2 of agents’ heterogeneity (still
with 02 > o1) proposed in the previous section are also retained. Again, for the ease of the expo-
sure, we only examine the following combinations of the parameters : (nl, St 01), (n2, St 01)
and (nQ, 52, 02). Lastly, we restrict our attention to the emergent networks obtained with values
of delta for which we have seen that the emergent networks exhibit the small world properties
(6 € [0.2;0;35]), whatever the other parameters of the model. After an iterative process, it
appears that when & = 0.25, one gets the best fit between the empirical and the theoretical
networks for our various measures. Consequently, only the results obtained with this value of

delta are presented.

4.3 Results

The indexes proposed in the preceding section can be quite easily modified to characterize
components. Table 3 exposes some basic network computations performed for both theoretical
and empirical networks. There are two main manners to read these results. One may first compare
directly numerical values computed on the two types of networks while the second consists,
more interestingly, in comparing the effects of the parameters (S, n) on each of them. The first
approach essentially aims to verify that the two types of networks exhibit comparable structures
while the second aims to check whether the expected effects of external factors on the strategic

formation of networks are corroborated by the data.

As regards the former approach, we find that the average degree of theoretical and empirical
networks are quite close when n = 20 while theoretical networks are denser when n = 50.
The average distances are also very similar when n = 20 while agents are in average closer the
one to the others in theoretical networks when n = 50. This difference can be explained as a
straightforward consequence of a lower density of empirical networks. The Gini coeflicient of the
degree distributions are again comparable though degree inequality is always higher in empirical
networks. The difference is reduced when agents’ heterogeneity and geographical size are large
suggesting that agents heterogeneity is higher in real networks. Furthermore, though the average
clustering of empirical networks is always higher, theoretical and empirical networks are very

similar in this respect.

According to the second approach, we find that when n increases, the average degree of
empirical and theoretical networks also increases. There is no clear impact of n on the inequality
of the degree distribution in the theory and in the empirics. Population size affects negatively
the geodesic distance of theoretical networks because it increases the density of agents on a given
geographical space and thus reduces link formation costs. Such a phenomenon is not observed
in the empirical networks since n impacts positively the geodesic distance of real networks. This

could be explained by a less homogeneous geographical space in the empirics or by the effect of
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unobserved exogenous factors (institutional or cognitive) eventually correlated with geography.
For instance, if agents were located in geographical clusters on the ring, then increasing n would
increase geodesic distance as soon as agents do not find more incentives to form distant (between
clusters) connections. This seems to indicate that, when the population is larger, theoretical

networks are even more small worlds & la Watts and Strogatz than empirical nets.

Turning to the impacts of the geographical dimension S, it seems to have a very similar in-
fluence on both theoretical and empirical networks. When S increases (n held constant) then the
average degree is significantly reduced in both theoretical and empirical networks. This confirms
that geographical distance plays positively on links formation costs. An expected mechanical
consequence of a significant reduction of average degree resides in an increase of the average
geodesic distance. Nevertheless, no significant change of average geodesic distance is observed in
both the theory and in the empirics. Even more, it slightly decreases in empirical networks. We
also observe that clustering increases in both cases. When S increases, there are less numerous
distant connections because these connections have a much lower chance to be payoffs increa-
sing given that costs are then higher. As geography increases, agents then tend to collaborate
proportionally even more with their nearest geographic neighbors and even less with agents lo-
cated far away. Finally, we observe that the Gini of the degree distribution increases : there are
more central agents when the geographical space is greater. This explains why, despite a much
lower connectivity, the average distance of emergent and empirical networks remains somehow
constant : more central agents play a very important role in reducing the distance between their

numerous neighbors.

Within-components degree asymmelry

We now turn to a deeper analysis of the within-components asymmetry in agents’ neighbo-
rhoods size in a component. For that purpose, we define po(k), the relative within component

C' degree distribution, as follows :

1
polk/ F#C =1)) =25 . 1 nlo) =k}, (9)
for all k = 0, ..., (#C — 1) with #C the number of agents in component C. Such a measure
allows us to directly compare the degree distribution of components that may not have exactly
the same population size while inequality might to some extent be influenced by the size of the
component (rather than the opposite) : within a component of size n, one can not be linked

with more than n — 1 other agents.

The results are to be found in Figure 4 which plots simple histograms of averaged p. dis-
tributions computed on empirical components and theoretical networks for the different popu-
lation size and geography as defined above. We find that the degree distribution of empirical
components is right-asymmetric, even when the population remains limited around 20 agents.
The theoretical networks also exhibit a right-asymmetric degree distribution, though inequality
is higher in empirical distributions. Let’s notice that, in the theoretical networks, the right-

asymmetry of the distribution is an emergent property of the decentralized process of network
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formation since the distribution of agents-specific costs is uniform. Nevertheless, it is found that
there are larger star agents in the empirics as compared to the theory when the population
is small (n'). This difference might be explained by more heterogeneity even when population
size is still small. Moreover, it appears that increasing S generates larger (global) stars in the
theory whereas it generates more intermediary (local) stars in the empirics. This might again
be explained by a difference in the distribution of agents in space between the model and the
data. If agents are already clustered in space, increasing the geographical dimension stimulates

more the emergence of local stars rather than the emergence of more global stars.

How do networks relate to geography ¢

We are also interested in the way in which network links are distributed in space. In order
to provide a systematic analysis of the within-components correlation of social connections with
geography, we propose to study ¢(+), the density distribution of direct connections according
to the geographic distance between two linked agents corrected by the maximal distance (.59)

between any two agents of the component C. It is formally given by :

1
h/S) = 1{si; = h}, 10
o (1/5) #{z‘j]ijegsti,jeC}Zijegsti,jec Lo } (10)

foral h=1,...,58.23

How do the network links relate to the geographical space in theory and empirics 7 The
averaged ¢ distributions computed on empirical and theoretical components for the different

parameters as defined above are presented in Figure 5.

As regards the empirics, we find that agents preferentially form links with other agents
located in their geographical neighborhood. A very strong asymmetry is preserved in the within-
component approach though it is reduced as compared to the across components distribution
(Figure 3). Indeed, 54% (80%) of the connections formed between agents within components
of population size around 20 (50) are at a geographical distance that is less than 10% of the
maximal distance between any two agents of the component. In the meantime 20% (12%) of
the connections formed between agents within components of population size around 20 (50)
are of a geographical distance greater than 50% of the maximal distance. When n increases,
there are proportionally less long distance connections. This corroborates our intuition on the
effect of n on the average geodesic distance (cf. Table 3) provided above : when n increases,
the average geodesic distance increases in empirical networks because links are more frequently
formed within clusters and distant connections are proportionally more scarce. Finally, S seems

to have no significant impact on the distribution.

Theoretical networks do also share a strong asymmetry in the distribution. In all configu-
rations of the parameters, the mode of the distribution is obtained for the lowest geographic

distance. However, such asymmetry does not reach the same extent as empirical networks. This

23The components for which all agents do live in the same town are not included so that the relative distribu-

tional measure keeps consistency.
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difference may be explained by the absence, in the theoretical model, of any ex ante agglome-

ration of agents in space, whereas in reality agents are located within territories.

5. Conclusion

In this paper, we have introduced a model of network formation in which heterogeneous
agents balance the benefits of forming links against their costs which increase with the geo-
graphic distance over a ring on which agents are located at equidistant intervals. Networks are
strategically formed in a decentralized manner by rational but myopic agents through a dynamic

meeting process.

We show that, for a large range of intermediary values of the decay parameter, the model
generates emergent networks that share the main structural properties of most real social net-
works, namely the four properties usually associated with the denomination of small worlds (the
existence of a large connected component that links directly or indirectly most agents, a short
average path length, a high average clustering and a high inequality in degree distribution). Des-
pite agents have disincentives to form triangles, clustering is achieved in the local space because
local connections are less costly. Networks connections also discorrelates with geography slightly
thanks to some agents who find connection opportunities with distant partners. These agents
are likely to be the ones that have the greater abilities to sustain connections at low costs and

who also tend to play the role of local intermediaries.

Moreover, we bring the model to network data concerning all inter-individual collaborations
between French inventors of all European patents over a 25 years period. A first global analysis
of the whole French co-invention network is provided. Given its high level of disaggregation in
components, we propose a within-components methodology to compare empirical networks with
theoretical networks. We find that theoretical and empirical networks present close structural
measures. More, most of the predictions on the impacts of several parameters effects on networks
structure are corroborated in the data. In particular, the dimension of the geographical space
on which agents are located reduces the density of the network because this increases links
formation costs, and thus both the relational distance between agents and the propensity to

form local connections (i.e. local clustering) increase.

The theoretical model also generates networks whose degree distribution is highly right-
asymmetric in a comparable extent as empirical networks. This property is a consequence of the
decentralized network formation process since agents are only assumed to be ex ante uniformly
heterogeneous in the link costs they bear. It is thus not necessary to assume that agents’ abilities
are asymmetrically distributed to fit the data : It is the network formation process that tends to
enhance inequalities as measured through agents’ degrees. Lastly, the theoretical model succeeds
in generating networks, most connections of which are formed in the local environment while still

a few distant connections are formed, a property shared by the empirical co-invention networks.

Among the limits of the model, we should notice that agents are obviously not located

uniformly in space but in clusters, a difference which is observed in the results. Nevertheless,
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this simple strategic model of network formation succeeds in predicting most of the structural
properties of co-invention networks and provides explanations or at least some intuitions for the

remaining features.
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# isolated agents 21,354
# connected agents #N (g) 76,612
# links 71 (g) 134,224
# of components 12,515
Size of the largest component 33,650
Size of the 2nd largest component 143
Average degree 7j(g) (over all agents) 2.74
Average degree 7)(g) (over connected agents) 3.50
Highest degree max;cn 7 (g) 202
Average clustering ¢(g) 0.54
Average geographic distance of direct connections® | 89.23 km

¢ Agents’ location is considered as declared in the patent which evidences each connection.
This implies the multiple counting of links (possibly associated to different distances) which

connect a mobile inventor who has invented secveral times with the same co-inventor.

Table 1. Descriptive statistics on the co-invention network.
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¢ |7
Agents degree distribution 0.50 | 1.73
Link geographical distance distribution®* | 0.39 | 1.51

Component size distribution 0.46 | 1.66

Table 2. Estimates of the parameters C' and ~ of the power law distribution on three
empirical distributions. A power law distribution is defined as follows : f (k) = Ck™7, Vk =
1,...,00, such that Zkzl,mm Ck™ =1, with f(k) the frequency of observations having value
k. We used a maximum likelihood approach (introduced by Nicholls, 1986) which, as suggested
by Egghe and Rousseau (1990), performs much better than a least square approach.

¢ Agents’ location is considered as declared in the patent which evidences the connection.
As a consequence, a connection between two persons is counted twice if at least one of the two
declared a different address in the two patents they invented together.

* Since distance is per se a continuous variable, the estimated distance variable is the number
of tens of kilometers initiated= [(# of kilometers)/10].
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Empirics Theory
No recent link formation 6=0.25
15<n<25| 30<n<70 | n'=20 n? = 50
all § S<S|8>8| o8t ol, 5! o2, 52
Average degree 7(g) 3.74 8.11 4.18 3.78 10.71 5.67
Average distance d(g) 2.51 3.22 | 3.4 2.43 2.02 2.25
Average clustering ¢(g) 0.73 0.71 0.75 0.63 0.63 0.70
Gini coefficient G'i(g) 0.31 0.33 | 0.37 0.22 0.16 0.33
Total # of agents (1,671) | (504) | (496) | (10,000) | (10,000) | (10,000)

Table 3. Various structural measures computed on empirical and theoretical emergent net-

works. S is the median geographical size of components of population 35 < n < 65.
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Figure 1. Average degree 7j(g) (top left), Gini coefficient Gi(g) (top right), average dis-
tance ratio d(g) (bottom left) and average clustering ratio ¢(g) (bottom right) of emergent
networks. Black continuous lines correspond to (nl, St 01). Grey continuous lines correspond to
(n2, St 01) . Black dashed lines correspond to (nQ, 52, 02) . Grey dashed correspond to (n3, 52, 02) .
Median bands curves computed for 1,000 simulations with randomly drawn values of ¢ € ]0;1[

for each configuration.
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Figure 2. Typical emergent networks generated with § = 0.25, n = n? = 50 agents and two

configurations of the other parameters : S1, ¢! (left network) and 52,02 (right network).
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Figure 3. The degree distribution in the whole population of connected inventors (76, 612)
(left graph), the distribution of components according to their population (central graph) (only
components of population below 100 agents are presented since it goes up to more than 33, 000),
and the distribution of connections according to their geographical distance (right graph) in
the whole co-invention network. Agents’ location is considered as declared in the patent which
evidences the connection. This implies multiple countings of links (given that agents may change

locations) which are corrected through a simple weighting procedure.
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Figure 4. The averaged within-component degree distribution ps(k) computed on theo-
retical and empirical networks. Top histograms are built with theoretical emergent networks
with 6 = 0.25 and (n!,St,0!) (top left), (n? S*,0t) (top central), (n?,52 0%) (top right).
Bottom histograms are using empirical data on agents belonging to components of population
15 < n < 25 (bottom left), on agents belonging to components of both a population 30 < n < 70
and a geographical size less than the median S (bottom central) and, on agents belonging to
components of both a population 30 < n < 70 and a geographical size greater than S (bottom
right).
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Figure 5. The averaged within-component link relative distance distribution ¢(k) compu-
ted on theoretical and empirical networks. Top histograms are built with theoretical emergent
networks with 6 = 0.25 and (n', S, o) (top left), (n? S, o) (top central) and (rn? 5%, 0%)
(top right). Bottom histograms are using empirical data on agents belonging to components of
population 15 < n < 25 (bottom left), on agents belonging to components of both a population
30 < n < 70 and a geographical size less than the median S (bottom central) and, on agents
belonging to components of both a population 30 < n < 70 and a geographical size greater than
S (bottom right). Multiple countings of links (due to the fact that agents change locations) are

corrected through a simple weighting procedure.

29



