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1. IntroductionThere is an increasing consensus in the economic literature to recognize that network struc-tures significantly influence the outcomes of many social and economic activities. As recentlyhighlighted in the theoretical economics literature, such networks are also often strategicallyshaped by the participating agents.1 Nevertheless, this literature has not yet dedicated muchattention to the full characterization of the endogenous networks and, most importantly, to thestrategic conditions that may lead to the emergence of networks that might resemble real net-works which are much more complex than the structures usually discussed (such as the emptynetwork, the complete network or even the complete star network).A series of recent contributions showed that most social networks, though they are heteroge-neous in many respects, share some common structural features. Real networks generally have avery large connected component that links directly or indirectly most agents while a restrictedproportion of agents remain within disconnected subsets. These networks are also proven tobe very short in the sense that, when counting the minimal number of inter-individual socialconnections (that is the social distance) between them, agents are found to be in average veryclose the one to the others. In the meantime, these networks are highly clustered, by which itis meant that there is a high probability that an agent’s neighbors are also neighbors together(Watts and Strogatz, 1998). It has also been shown that agents are highly unequal with respectto the size of their neighborhoods : few agents have many connections while many agents havefew links (Barabasi and Albert, 1999). Without a clear consensus in the literature, networksthat exhibit some or all of these properties are often called small world networks. Finally, veryrecently, some authors started to study the spatial structure of networks and to show that somenetworks tend to correlate with geography (e.g. Gastner and Newman, 2006, on communicationnetworks).It is still a challenge on the agenda to understand the social and economic conditions that leadto the formation of networks that exhibit such structural properties, and beyond, to explain thevarious structural attributes of eventually more specific social networks. In fact, several models,which incorporate, in various extents, randomness and ad-hoc settings in the formation of links,have been introduced so as to find out the main factors that lead to the formation of complexnetworks.2 Nevertheless, none of these models accounts for the strategic formation of socialnetworks.In this paper, we make a first step in this direction by confronting the strategic approachof network formation with social networks data. We try to appreciate the extent to which1Models of strategic network formation encompass various contexts such as imperfect information diffusionin networks (Jackson and Wolinski, 1996 ; Bala and Goyal, 2000), job-contact networks (Calvó-Armengol, 2004),oligopolies and R&D collaborations (Goyal and Moraga, 2001 ; Goyal and Joshi, 2003), buyer-seller networks(Kranton and Minehart, 2000), etc.2Among these contributions, Jackson and Rogers (2007) have proposed a model in which agents are attachedto other agents in two manners. Some neighboors are picked at random among all other agents while some othersare picked by searching locally through the current structure of the network.2



the structure of interpersonal research collaborations can result from a decentralized processof strategic network formation. So as to mimic in a simple and stylized manner the impactof inter-individual collaboration networks on individual payoffs, we rely upon a variation of theconnections model (Jackson and Wolinsky, 1996). Agents benefit from positive externalities fromother agents given that there exists at least a sequence of continuous inter-individual connectionsbetween them on the relational network. Moreover, the strength of the positive externalitydecays geometrically with social distance. This model seems particularly relevant if one aims todescribe knowledge networks since the positive externality can account for knowledge spilloversand there is a decay parameter that tunes the quality of knowledge transmission through thenetwork connections. The kind of knowledge the transmission and impact of which this modelintends to capture, is all together sensitive, advanced and mainly tacit. Such knowledge is usually"naturally" disclosed to the selected direct individual partners in the research process : if a linkexists, then it is (imperfectly) conducive to knowledge transmission.3 These features of knowledgetransmission in inter-individual collaboration networks are consistent with the very recentlyavailable empirical evidence which show that inter-individual connections are the support ofknowledge spillovers and that the probability of observing a knowledge flow decreases sharplywith social distance between individuals (e.g. Breschi and Lissoni, 2006a and Singh, 2006).Our model further introduces geography in a very simple and stylized way. Agents are assu-med to be located at equidistant intervals on a circle of a given dimension. As in Johnson andGilles (2000) whose world is linear, we assume that link formation costs increase linearly withgeographic distance. This feature stresses a specific impact of geography on network formation,that traces back to Debreu (1969), and the empirical applicability of which seems not to havebeen reduced by the generalization of the communication technologies (see Gaspar and Glaeser,1998). The underlying assumption is that geographically distant research collaborations are aseffective as close connections per se but do impose more monitoring and costly interactions tobe achieved. Another feature of our model lies in the introduction of agents’ heterogeneity intheir ability to sustain direct connections at given costs. Finally, the strategic formation of net-works occurs in a dynamic process close to the one introduced by Jackson and Watts (2002).A numerical methodology is presented, which has been first introduced in Carayol and Roux(2004, 2006), which allows us to obtain stable networks in the long run.Very few data are available to track inter-individual research collaboration patterns in areliable, systematic and quantitative manner over a long period of time. Our empirical evidenceis based on the relational information contained in all European Patent Applications, at leastone inventor of which declared an address in France and which occurred over the period 1977-2003.4 We build the co-invention network by allocating a connection between two individuals ifthey both appear among the inventors of the same patent, at least once. A connection in this3Thus our approach do not aim to model the strategic disclosure of knowledge on the top of the strategicformation of networks, a feature that would be more relevant to stress collaborations between organizations.4The data, nicely provided by Francesco Lissoni, are an extraction of the EP-INV database produced byCESPRI-Universita Bocconi. 3



network reveals a strong and deliberate collaboration between two persons. We believe that thisis a restricted but acceptable manner to evidence research collaborations, which are the supportof advanced and sensitive knowledge transmission. From a methodological point of view, theprocedure is similar to the one performed for measuring scientific collaboration networks fromdata on co-authorships of scientific publications (Newman, 2001, Barabasi et al. 2002). Veryrecently, Goyal et al. (2006) also apply this method to study the scientific collaboration networksin economics from papers co-authorships relying upon Econlit database. Our dataset counts morethan 114,000 patents, invented by nearly 98,000 inventors among which more than 76,000 haveinvented a patent with at least one other French inventor.Our main results are the following. We show that the theoretical model generates networksthat share the standard properties of social networks. More precisely, for a large range of in-termediary values of the decay parameter that tunes the strength of the positive externalities,the four properties that characterize small world networks are observed. Next we provide a firstglobal analysis of the whole French co-invention network. Given its high level of disaggregationin components, we propose a within-components methodology to compare empirical with theo-retical networks. We find that they present close structural measures. Moreover, most of thepredictions on the effects of the different parameters (such as population size or geographicaldimension) on networks structure are corroborated in the data. The theoretical model also gene-rates emergent networks whose degree distribution is highly right-asymmetric in a comparableextent as in empirical networks. Lastly, the theoretical model shows that most connections areformed in the local geographic environment while still a few distant connections are formed, ashared property with the empirical co-invention networks.The paper is organized as follows. The next section presents the model of network formation.Section 3 presents a series of results on the structure of emergent networks as compared to thestandard properties that real social networks share. Section 4, presents the data and comparesthe (theoretical) emergent networks with the empirical networks. The last section concludes.2. The strategic formation of inter-individual research collabo-ration networksIn this section, we begin with basic notions on non directed graphs. We then introduce ourmodel and discuss the individuals’ incentives to form collaborative links. Finally, we turn to thedynamic perturbed process that leads to networks formation.2.1 NetworksWe consider a finite set of n agents, N = {1, 2, ..., n} with n ≥ 3. Let i and j be twomembers of this set. Agents are represented by the nodes of a non-directed graph the edges ofwhich represent the links between them. A link between two distinct agents i and j ∈ N isdenoted ij. A graph g is a list of non ordered pairs of connected and distinct agents. Formally,{ij} ∈ g means that ij exists in g. We define the complete graph gN = {ij | i, j ∈ N} as the4



set of all subsets of N of size 2, where each player is connected with all others. Let g ⊆ gN bean arbitrary collection of links on N . We define G = {g ⊆ gN} as the finite set of all possiblegraphs between the n agents. The empty graph, denoted g∅, is such that it does not contain anylinks.Let g′ = g + ij = g ∪ {ij} and g′′ = g − ij = g\ {ij} be respectively the graph obtained byadding ij and the one obtained by deleting ij from the existing graph g. The graphs g and g′are said to be adjacent as well as the graphs g and g′′. Let a path in a non empty graph g ∈ Gconnecting i to j, be a sequence of edges between distinct agents such that {i1i2, i2i3, ..., ik−1ik} ⊂g where i1 = i, ik = j. Let i←→g j be the set of paths connecting i and j on graph g. The set ofshortest paths between i and j on g noted i←̃→gj is such that ∀k ∈ i←̃→gj, then k ∈ i ←→g jand #k = minh∈i←→gj #h. The geodesic distance between two agents i and j is the number oflinks of a shortest path between them : d(i, j) = dg(i, j) = #k, with k ∈ i←̃→gj. When there isno path between i and j then their geodesic distance is conventionally infinite : d(i, j) =∞.For any g, we then define N(g) = {i | ∃j : ij ∈ g}, the set of agents who have at leastone link in the network g. We also define Ni(g) as the set of i’s direct neighbors, that is :Ni(g) = {j | ij ∈ g} . The cardinal of that set ηi(g) = #Ni(g) is called the degree of nodei. N2i (g) = {j | j �= i, d(i, j) ≤ 2} is the set of agents who are either directly connected orindirectly connected at distance two to i. The total number of links in the graph g is η(g) = #g.Let us denote η̂(g) ≡ 1n∑i∈N ηi(g) = 2η(g)/n, the average degree of g. A network g is said tobe connected if for any pair of distinct agents i, j ∈ N(g), i ←→g j �= ∅. A component C is asubset of N(g) such that for any pair i, j ∈ C, i �= j, i←→g j �= ∅ and, for any i ∈ C and k /∈ C,i←→g k = ∅. It follows that the set of non isolated agents N(g) is such that N(g) = ∪k=1,...KCk,with K the number of components Ck, k = 1, ...,K.Finally, let us assume that agents are equidistantly located on a circle. Without loss of genera-lity, agents are ordered according to their index, such that i is the immediate geographic neighborof agent i+ 1 and agent i− 1 but agents 1 and agent n who are neighbors since they close thering. We then define a operator denoted l(i, j) that simply counts the number of inter-individualintervals on the ring separating i and j. It is given by l(i, j) = min {|i− j| ;n− |i− j|} . Nowassume that the maximum geographical distance on the circle is given by S (the geographi-cal dimension of the circle). Then, the geographic distance between i and j is simply given bysij = l(i, j)S/ ⌈n/2⌉,5 with ⌈n/2⌉ the smallest integer higher than or equal to n/2. S/ ⌈n/2⌉ canbe viewed as an inverse measure of the density of the population.2.2 The modelWe now propose a simple model of strategic formation of inter-individual collaboration net-works which intends to capture the impact of knowledge diffusion in networks on agents payoffs.We assume that interpersonal connections are conducive to knowledge or ideas diffusion. In thespirit of Jackson and Wolinski (1996), we consider that agents benefit from their costly direct5In the circle metric, the maximum number of interindividual connetions is given by : maxi,j∈N l(i, j) = ⌈n/2⌉ .5



connections but also from indirect links through the relational neighborhood of their partners.Let us consider how agents derive payoffs from their position in the relational network. Wepropose the following individual payoff function :πi (g) =∑j∈N2i (g) δd(i,j) −∑j∈Ni(g) cij . (1)The first argument of the payoffs accounts for the gross payments one agent gains fromknowledge diffusion through its direct or indirect connections, assuming no time lag for simplicity.There is a decay parameter δ ∈]0; 1[ which gives the share of knowledge effectively transmittedthrough the direct or indirect connections. It is thus a decreasing function of the geodesic distancesince δ is less than the unity. It may be associated with the characteristics of knowledge :communication quality is likely to decrease with the degree of tacitness of knowledge whileit would increase with the codification of knowledge. Moreover, we consider that knowledgespillovers only play at geodesic distance equal to two. Thus agent i benefits from agent j ifthey are directly connected or indirectly connected at distance two (formally, j ∈ N2i (g) ord(i, j) ≤ 2).6 The empirical evidence on knowledge spillovers from patent citations supportthese assumptions. In particular, Singh (2005) and Breschi and Lissoni (2006a) showed that theprobability of patents citations decreases sharply with social distance between patents inventors.The second part of the right hand side of equation (1) describes the costs of sustaining directlinks, with each direct link costing cij to i. The cost of each direct link is given by :cij ≡ aisij = ai l(i, j)⌈n/2⌉S. (2)Agents are assumed to be heterogeneous in their link formation costs in the sense that the pa-rameters ai are independently distributed according to the uniform distribution ∀i ∈ N(g), ai ∼U [a, a] with strictly positive support and so that its mean equals unity : (a − a) /2 = 1. Thisimplies that the costs supported by two agents to be linked together may differ due to agents’heterogeneous abilities (cij �= cji). Moreover, we assume that the costs linearly increase withthe geographic distance separating agents on the circle metric sij . The assumption according towhich link costs increase with distance can be justified by the fact that closely located agentsincur lower costs to establish communications (Debreu, 1969) and to coordinate. Indeed, whenagents are geographically distant, face to face interactions imply higher transporting costs andtime.7 Moreover, geographic distance could also generate higher monitoring costs (e.g. Lerner,1995).6This specification departs from the simple connections model introduced by Jackson and Wolinski (1996) inwhich spillovers are still effective at any finite geodesic distance.7This seems to still hold despite the introduction of Internet technologies since they are complementary to faceto face interactions (Gaspar and Glaeser, 1998). 6



2.3 Incentives to form bilateral connectionsWe now turn toward the formation of networks. It is assumed that the relational networkemerges from the willingness of agents to form links in order to benefit from knowledge flows. Asa consequence, agents try to maximize the value generated from direct and indirect connections,avoiding superfluous connections. Nevertheless, agents are myopic in the sense that they taketheir decision on the basis of the immediate impact of this decision on their current payoffs.Let us examine the individuals’ incentives to form direct connections that are the expectedreward an agent i would get in forming a connection with some other agent j, ∆πi (g, ij). Forthat purpose, we define N̂ij(g) = N2i (g) ∩ (Nj(g) ∪ {j}) the set of agents who are both at adistance less or equal to two from agent i and in the direct neighborhood of agent j, including jhimself. Notice that N̂ij(g) �= N̂ji(g). Let η̂ij (g) be the cardinal of this set. We then define thefunction ∆πi (·, ·) as follows :∆πi (g, ij) ≡ πi (g + ij)− πi (g) = δ + δ2 (ηj (g)− η̂ij (g))− aisij . (3)The incentive of agent i to form a link with j increases with the decay parameter δ, withthe size of j’s relational neighborhood ηj and decreases with η̂ij (g) which accounts for theoverlapping of the two agents’ neighborhoods (from i’s point of view, since η̂ij (g) �= η̂ji (g)).Thus there is a disincentive to form a link with an agent who is already connected to someother agents whom one already benefits from (and thus to form triangles). It also decreaseswith agent i’s idiosyncratic costs to sustain connections ai, and with the geographic distanceseparating i and j on the circle metric sij . Through the geographic distance (reminding thatsij = l(i, j)S/ ⌈n/2⌉), S plays negatively on incentives since n is held constant, it decreases thedensity of agents on the geographical space and thus increases the link formation costs. On theopposite, incentives increase with n since, S being held constant, the larger the population, thegreater the agglomeration of agents (agents are closer the one to the others on the circle metric)and so the lower the costs.2.4 Dynamic network formationFollowing Jackson and Watts (2002), we assume that, at each period, two agents i, j ∈ Nare randomly chosen with a given constant non null probability p. If these agents are alreadyconnected, they consider whether they may unilaterally severe the link or bilaterally keep it. Ifthey are not directly connected, they consider whether they should add this connection or staydisconnected. As in Jackson andWolinski (1996), we assume that the formation of a link betweentwo agents requires the consent of both of them, but not its deletion, which can unilaterallyemanate from one of them. Formally, writing gt the network at discrete time period t, thedynamic process can be described as follows :i) if ij ∈ gt, ij ∈ gt+1 iff ∆πi (gt − ij, ij) ≥ 0 and ∆πj (gt − ij, ij) ≥ 0,ii) if ij /∈ gt, ij ∈ gt+1 iff ∆πi (gt, ij) ≥ 0 and ∆πj (gt, ij) ≥ 0 with a strict inequality for atleast one of the two agents. 7



Small but non vanishing random perturbations affect agents’ decisions in creating, main-taining or deleting links. These perturbations may be understood as mistakes or as randomexperiments. We propose to let such an error term decrease in time according to the followingsimple rule : εt = 1/ (t+ 1)+ ε. (4)This rule ensures that a significant noise affects the dynamics in the beginning while it decreasesmonotonically with time down to a small strictly positive limit : limt→∞ εt = ε. Agents are likelyto make less and less errors through time though still a very small error probability persists inthe long run.The evolution of the system at any time t only depends on the present state of the systemgiven by the graph structure gt. The stochastic process is thus Markovian. The evolution of thesystem {gt, t > 0} can be described by the time-varying probability matrix (P(εt)) describingthe one-step transition probabilities at each period t between all possible states of the finite statespace G. According to Robles (1998), the long run equilibrium ψ (ε) of such time-inhomogeneousMarkov chain exists, is unique and is equal to the equilibrium of the Markov chain perturbed bythe constant error ε.8 It is then ergodic. This property is interesting since it renders numericalexperiments more tractable in order to examine with good confidence the long run behavior ofthe system (Vega-Redondo, 2006). We label the networks on which the process stabilizes in thelong run as emergent networks. The definition follows.9Definition 1 A network g ∈ G is emergent if its probability of occurrence (ψg(ε)) in the long runequilibrium of the stochastic process described by the transition matrix P(εt) is strictly positive.The set of emergent networks is Ĝ = {g ∈ G ∣∣ψg(ε) > 0}.3. The structure of emergent networksIn this section, we analyze the structure of the emergent networks formed under the modeldescribed in equations (1) and (2) and selected by the stochastic process presented in the pre-ceding section. We first provide some measures of the network structures that have been mainlyused to characterize empirical social networks. These statistics are then used to characterize thearchitecture of the (theoretical) emergent networks for various values of the model parameters.Of particular interest to us, are the conditions under which the networks that formed wouldshare the properties of many real social networks.8See Proposition 3.1 of Robles (1998, p. 211).9Notice that the set of emergent networks is broader than the set of stochastically stable networks (Young,1993) which is included in Ĝ (cf. Definition 1). If we label µ (ε) the (unique) stationary distribution of the time-homogeneous markov chain associated with transition matrix P(ε), this claim is formally : for all g such that, iflimε→0 µg(ε) > 0 then ψg(ε) > 0. This can be easily proved by recalling the Freidlin and Wentzell (1984) theoremthat states : ∀g, ψg(ε) = µg(ε) is of the form ψg(ε) = υg(ε)/∑g′ υg′(ε) with υg(ε) a polynomial in ε.8



3.1 Measuring networksTo study the structural properties of emergent networks, we compute several dedicated sta-tistics. The first index is the average distance (or average path length) between any two (directlyor indirectly) connected agents of the network. It is given by :d (g) = ∑i∑j �=i d (i, j)× 1 {i↔g j �= ∅}# {i, j |i �= j ∈N, i↔g j �= ∅} , (5)if η (g) > 0, with # {·} denoting the cardinal of the set defined into brackets and 1 {·} , the indi-cator function that is equal to unity if the condition into brackets is verified and zero otherwise.This index allows us to appreciate the extent to which directly or indirectly connected agentsare distant in the relational network.The second index is the average clustering. It indicates the extent to which neighborhoodsof connected agents overlap or, in other words, the propensity with which the neighbors of anagent are also neighbors together is high. It is given by :c (g) = 1n ∑i∈N;ηi(g)>1 # {jl ∈ g |j �= l ∈ Ni(g)}# {j, l |l �= j ∈Ni(g)} . (6)The two indicators presented above are affected by the average degree of the network (η̂(g))that is likely to vary with δ and the other parameters of the model. Therefore, these indicators aresomehow biased and we must find an efficient control for average degree.10 In the spirit of Wattsand Strogatz (1998), we associate control random graphs to emergent networks characterizedby the same number of agents and links (and thus by the same average degree). Such randomnetworks are simply built by allocating a given number of edges to randomly chosen pairs ofagents (Erdös and Rényi, 1960). For each given number of edges of emergent networks, theaverage distance and the average clustering are numerically computed and averaged over 1, 000of such random graphs. Thus, instead of looking at c (g) , where g is an emergent network, wecompute the ratio c̃ (g) = c (g) /c (grd) , where c (grd) denotes the mean average clustering of the1, 000 random networks that have exactly the same average degree as g. Similarly we computed̃ (g) = d (g) /d (grd).Those two ratios can be used to define the small world property à la Watts and Strogatz(1998).11 Such a structure is characterized by the two following properties :c̃ (g)≫ 1 and d̃ (g) ≈ 1. (7)10For instance, it is easy to see that the density of network affects crucially the average distance of the networks :more dense networks are likely to exhibit a shorter average path length. Without any control for density, one cannotknow whether a network is shorter thanks to the structural allocation of links or simply thanks to a higher density.This is also true for the average clustering.11Watts and Strogatz (1998) presented an experiment allowing to build small world networks by rewiring agiven proportion of edges from an initial regular lattice and reallocating them randomly. Notice that their aimwas not to model how such networks are formed by the agents’ decentralized behaviors.9



This means that small world networks are simultaneously highly clustered as compared to ran-dom graphs and that their average distance is close to the one of random graphs which areknown to exhibit very short average path length.Though it has been proven that most real social networks are small worlds à la Watts andStrogatz, two additional properties have also been emphasized in the literature as commonlyobserved in social networks. The former is the existence of a very large component, the size ofwhich is much larger than the size of second largest component. More its size is often approachingthe size of the whole population (Newman, 2001). The last property is a high inequality in thesize of agents’ neighborhoods : few agents have many connections while many agents have fewlinks. Such a property can be studied using the distribution of the nodes’ degrees in a graph g,ρ(k), defined as the fraction of agents having k links in g. It is defined as :ρ(k) = 1n∑i∈N 1 {ηi = k} , (8)for all k = 0, ..., n− 1. Again, if links where allocated fully randomly, we know, since Erdös andRényi (1960), that this distribution would be Poisson and consequently its variance would beequal to its mean, which is the average degree η̂(g). On the contrary, most real networks exhibita long right tail that is a very unequal distribution of links among agents.12 A usual manner tocompute the asymmetry of a distribution is by relying on its Gini coefficient. Assume agents aregiven new indexes given the relative size of their neighborhoods so that i < j iff ηi < ηj . Then,the Gini coefficient is given by :Gi (g) = 1− ∑i=1,...,n ρ (ηi(g)) (θi(g) + θi−1(g))θi(g) ,with θi(g) = ∑j=1,...,i ρ (ηj(g)) ηj(g) and θ0(g) = 0. It is equal to twice the area between theLorenz curve and the 45◦ straight line crossing the horizontal axis at zero. Notice that, if allagents have the same number of nodes, that is agents are all equal, then the Gini coefficient isnull. When inequality is maximal, then the Gini coefficient equals one.3.2 ResultsThe various statistics are computed on networks that are on the support of the uniquelimiting stationary distribution ψ(ε), obtained through a series of numerical experiments.13 Inorder to provide some intuition on the impacts of the various parameters of the model, weconsider three population sizes (n1 = 20, n2 = 50 and n3 = 100), as well as two geographic12As a matter of fact, since Barabasi and Albert (1999), many scholars have demonstrated that the degreedistribution of social networks can be approximated by a power law. See the next section and Table 2 for such anapplication on co-invention empirical data.13We also fixed the limit error term ε to 10−4. Moreover, all experiments are stopped at T = 20,000, periodafter which the process is proven to have surely stabilized on a given pairwise stable state with this model. Anetwork is said to be pairwise stable if no incentive exists for any two agents to form a new link or for any agentto break one of his existing links (Jackson and Wolinski, 1996).10



sizes (S1 = 1 and S2 = 2) and two amplitudes for agents’ heterogeneity (ai ∼ U [0.5, 1.5] andai ∼ U [0.1, 1.9]). Notice that, since the means of the ai are by definition always equal to unity,the two distributions only differ in their variances, and so we will refer to the two heterogeneitydistributions with respect to their standard deviation σ1 and σ2 (with σ2 > σ1). It wouldbe cumbersome to present the twelve configurations of the different values of the parameters.Since it is likely that when n increases, both the heterogeneity of the population and the sizeincrease, and since the remaining configurations do not bring more relevant information, we willlimit the exposition of our results to the following four configurations of parameters values :(n1, S1, σ1), (n2, S1, σ1), (n2, S2, σ2) and (n3, S2, σ2) . Finally, for each of these configurations,1,000 simulations are performed with randomly drawn values of δ ∈ ]0; 1[ so as to fully explorethe impact of δ on the structure of emergent networks.The ratios (c̃ (g) and d̃ (g)) as well as the Gini coefficient Gi(g) and the average degree (η̂(g))are plotted in Figure 1. We can observe that the architecture of emergent networks strongly varywith the parameters value.When δ is very close to zero, emergent networks are empty and thus their average degreeη̂(g) is null. A very high value of the Gini coefficient is obtained when delta is small and bothheterogeneity and the geographical dimension of the ring (S) are high because then many agentsremain not connected while a few have some connections. Inequality is then very high since a fewagents accumulated all the graph connectivity. It is only in these configurations that the modelgenerates isolated agents and eventually several components. Otherwise, all agents always belongto a unique component. As δ increases, the incentives to form collaboration links also increase andso does the average degree. The average distance ratio reaches a maximum value when δ ≈ 0.1.Networks are then only locally connected since the incentives to form distant connections arenot sufficient. As a consequence, it takes in average many inter-individual connections to reachsome other agent potentially located far in the geographical ring. This also explains why a veryhigh clustering ratio is then reached (despite the disincentive to form triangles) : agents connectto their nearest geographical neighbors and so clustering is achieved in the local geographicalareas.When δ increases from 0.15, the average distance ratio straightly decreases to become equalor below unity at values of δ which range from 0.2 to 0.35 depending on the parameters. Forthese values of δ, the clustering ratio also decreases, but in a much smoother slope. The averageclustering of emergent networks still ranges there from two to six times greater than the clusteringof their random graphs controls. Thus, in this region of δ, the property expressed in (7) is clearlyverified. A small world property à la Watts and Strogatz is obtained since some agents findsufficient incentives to form (geographically) distant connections. These agents, who are alsomuch more densely connected than others, are likely to be precisely the ones who bear the lowerindividual costs of forming links (ai). It is interesting to notice that increasing simultaneouslyagents’ heterogeneity and S preserves a high clustering. Nevertheless, as Figure 2 illustrates, thishigh clustering tends then to be achieved in different manners depending on these parameters.When σ and S are high, it is more the intermediary of some central agents that allows the11



overlapping of neighborhoods since local agents are now only minimally locally connected (onlyconnected to their two nearest neighbors). When σ and S are lower, the high clustering is ratherdue to the overlapping of local connections. In all configurations of n, σ and S, it is in thisregion of δ that the Gini coefficient is the largest if we do not consider the region δ � 0.15.Therefore we can conclude that when δ ranges from 0.2 to 0.35, the four standard propertiesthat characterize a small world (small average distance ratio, large clustering ratio, existence ofa very large component and a high inequality in degrees) are verified.When δ increases again from 0.35, the average distance ratio remains below unity whilethe average clustering ratio still decreases. Indeed, the more δ approaches the unity, the moreδ2 tends to δ, and so the stronger the disincentive to form triangles. This also explains why theaverage degree tends to stabilize or even to decrease either when the population is not large,or when the heterogeneity and the geographical dimension are low. Indeed, as δ increases, theincentives to form connections and the disincentives to form triangles increase simultaneously,each affecting average degree in an opposite manner. When either n, or σ and S are high, thedisincentives to form triangles are less effective because the formation of connections is then morespecific to individuals and less sensitive to variations in δ. As a consequence, the region of δ forwhich the four properties that characterize a small world are obtained tend to be larger whenthe geographical dimension and agents’ heterogeneity are greater. For instance, when S = S2,and σ = σ2, not only the Gini coefficient remains high (thanks to the high heterogeneity) butalso does the average clustering ratio up to δ = 0.7. Lastly, as expected from the incentivesto form connections given in equation (3), the density is greater when the population is largerand when the geographical size is smaller. This simply derives from the fact that costs of linkformation depend crucially on the density of the population on the geographical space : either ifone reduces the geographical size of the ring, or if one increases the number of agents, agents aregeographically more proximate the one to the others and thus link formation costs are reduced.4. Are inter-individual collaborations strategically formed? Evi-dence from co-invention networksThe aim of this section is to investigate whether our model of inter-individual collabora-tions formation offers acceptable predictions of some observed empirical patterns. Few data areavailable to realize such an experiment. Our application concerns the network of French co-inventors, built from patent data over a 25 year period. As for the study of the structure ofscientific collaboration networks from data on co-authorships of scientific publications in givenfields (e.g. Newman, 2001, Goyal et al. 2006), one can consider inventors as connected nodes(i.e. collaborators) in a non directed relational graph if they have co-invented a patent together.This appears to us to be a stringent but reasonable definition of research collaborations.1414Indeed, we can suppose that people who have co-invented a patent really and deliberately work and collaboratetogether. Of course, not all collaborations lead to invention and not all inventions are patented. Nevertheless, wecan suppose that if a research collaboration is strong, if it lasts over a significant period of time and if researchoccurs in a patenting domain, then it nearly always leads to a patent.12



The detailed study of the structural properties of co-invention networks, which remain igno-red, should allow us to appreciate whether collaboration networks may have been strategicallybuilt by agents as described in the theoretical model presented in Section 2. For that purpose, theglobal structural properties of the (empirical) co-invention networks are first examined. Next, amethodology is developed to compare emergent (or theoretical) networks to empirical ones. Thismethodology can be designated as a within-components approach according to which agents’strategies can be, to some extent (and given a selection of -non active anymore- components),understood independently of the agents that do not belong to their component as they are in thetheoretical model. A specific focus is made on within-components degree distribution as well asthe relation between networks and geography. Moreover, we restrict our attention to the valueof the delta parameter for which realistic properties of emergent networks are obtained.4.1 Co-invention networksOur empirical evidence is built upon all European Patents Applications, at least one inventorof which declared an address in France, and the priority date of which is between January 1977and August 2003 included.15 All non French inventors of these patents have been droppedso that our evidence is limited to France. The dataset counts 97,966 inventors of more than114,000 patents. Among these inventors, 76,612 agents have invented a patent with at leastone other French inventor. The co-invention network is constructed by allocating links betweenany pair of agents who have invented at least one patent together. Table 1 provides some basicstatistics of this network. Beyond such global statistics, a standard way to grasp a networkstructural properties relies on a detailed analysis of its degree distribution. Remember thatsocial networks are proved to exhibit a high inequality in neighborhood sizes and that heavytail degree distributions such as power law distribution are usually found (Barabasi and Albert,1999). Figure 3 presents the histogram of the distribution and Table 2 the power law estimatesof degree distribution of the population of non isolated inventors.Patent data mention the personnal addresses of inventors. We were thus able to locate in-ventors on the metropolitan French area thanks to the matching of the post codes mentionedin their addresses with their corresponding latitude and longitude coordinates16. Nevertheless,inventors may have different locations : up to 11, 970 among the connected inventors have de-clared at least two different addresses. Note that this number might be overestimated since aninventor may be abusively recorded as being located in two different places just because twodifferent writings were used for the same address. Most geographically mobile inventors remainin the same area : nearly 79% (86%) of mobile inventors have a maximal distance between their15These data are an extraction of the EP-INV database produced by CESPRI-Universita Bocconi. These datahave been treated for dealing with the homonymy of inventors’ names. The procedure was performed in threesuccessive steps : 1) standardization of names and addresses and attribution of an inventor code for a uniquesurname, name and address ; 2) computation of similarity scores for all possible pairs of inventors with the samenames and surnames but different addresses, 3) identification of a threshold value of the score over which twoinventors are considered as the same inventor. For more details on the data see Lissoni et al. (2006).16Those coordinates were nicely provided to us by the IGN (Institut Géographique National).13



different locations which is less than 20km (50km).The euclidian geographical distance can be computed for any pair of addresses given theircoordinates (latitude and longitude). Since some agents change location, more than one distancecan be associated to a pair of connected agents : some agents invent several times with the sameco-inventor while at least one of the two changed address in between. Thus, behind the 134, 224direct connections between agents, one effectively records nearly 150, 000 distances betweenco-inventors. We apply the distributional approach to study the geographic organization ofconnections, that is the extent to which direct relations correlate with geography. We observethat the distribution of connections according to the geographic distance between connectedagents is very skewed. More than 75% of the connections are achieved between inventors thatlive at less than 50 km from each other while less than 4% of the connections are formedbetween agents who live at more than 550 km from each other. Figure 3 presents the (properlyweighted for multiple countings) histogram of the distribution while power law estimates of thedistribution are exposed in Table 2.It should also be noticed that the largest component of the network counts 43.92% of thepopulation17 (34.35% if we include isolated individuals) which is a relatively low proportion ascompared to other social networks. As a point of comparison, the largest component of scientificco-authorship networks rarely include less than 70% of the population (see for instance Newman,2001 and Barabasi et al. 2002). Nevertheless, these studies always focused on given scientificdomains and disciplines (for instance medicine, condensed matter physics or computer science).Such a low proportion can also be partially explained by a lower density of the network.18 Onecan also argue that technological knowledge may be more fragmented as compared to scientificknowledge. Furthermore, the institutional configuration could generate a higher fragmentationof the population of inventors as compared to authors who evolve in a more open scientific modeof knowledge production. When applying the distributional approach to components, we findthat the distribution of components with respect to their population size can be fitted by a powerlaw distribution (see estimates presented in Table 2). The following subsection investigates thepossibility that, though the global analysis remains relevant, there might be some interest inhaving a component based approach.4.2 A within-components methodology for comparing theory with empirical dataWe now address the issue of the structural comparison between empirical and theoreticalemergent networks. To be compared with emergent networks, we are in need of co-inventionnetworks that might have been generated in a similar context. The main problem faced then isthe following. In the theory, a population of n agents is given. The agents deal at one time or17Breshi and Lissoni (2006a,b) find that the largest component of the co-invention networks is 16% of the Italianinventors of European patents recorded over 1978-1995 and 46% of the US inventors of European patents recordedover 1978-1999.18It is a well known property of random as well as scale free networks that increasing network density nonlinearly leads to the emergence of a "giant component" which tends to encompass nearly all the population(Erdös and Rényi,1960). 14



the other, and probably several times, with the eventuality to connect with any of the n − 1other agents. In the empirical data, since the co-invention network is not restricted ex ante toa specific domain or institution, it is clear that not any agent may have been connected withany other. Agents belong to subsets within which they may be connected the one to the otherswhereas establishing connections between subsets is very unlikely. Nevertheless, it is very difficultto clearly identify separate subsets of agents from the rest of the population. If this was fullyobservable, agents’ behaviors could be explained by only considering the eventuality of formingconnections with other people within a given subset.To deal with this problem, an obvious way is to rely on the observed allocation of agentsin components, assuming that agents of a same component are, for some unobserved factors,more likely to be isolated from people outside the component. But a typical error can thenbe made : some agents belonging to different components, though they did not yet, mighthave been connected to each other and will probably be connected in a soon future. If thishappens, agents’ strategies would be incorrectly perceived. In order to reduce as much as possiblethis potential measurement error, we only analyze components that exhibit inertia in the lastyears of observation. Namely, we keep only components that experienced no link creation in thelast two years of observation (2002-2003). These components are assumed to have reached anequilibria.19,20Components of small population size are not relevant for a detailed within-component struc-tural analysis. Thus all components of population lower than 15 are dropped. Among the 194components of size n ≥ 15, 129 exhibited inertia over 2002-2003 (the procedure drops out thelargest component). After these elimination procedures, only one component is of populationsize greater than 70 inventors. We thus restrict to components of size around n1 = 20 agents(15 ≤ n ≤ 25) and around n2 = 50 (30 ≤ n ≤ 70)21. We are also interested in the potentialimpact of geography on network structure which, in the model, is assumed to increase linksformation costs. For that purpose, a maximal geographic distance between any two agents ofeach component is computed. When agents have several addresses, one of them is picked at ran-dom. Such a measure can be considered as the Euclidian equivalent to the parameter S whichappears in the theoretical model. Inventors, are split into two subsets according to the fact thattheir components have S lower or greater than the median S.22 Notice that these two subsetsof components do not differ significantly in their number of agents : mean number of agents is19Such observed stability is not fully equivalent to the long run equilibrium that theoretical emergent networksreached. Nevertheless, the long run observations are not available in the data.20It should also be acknowledged that two or more components might persistently remain separated though nobarrier of any kind would prevent connection between agents belonging to different components. Even though itis not possible to completely avoid this eventuality, theoretical results however tend to suggest that it is quiteunlikely since separate components are rarely found in the emergent networks and only for extreme values of theparameters (when δ is very close to zero).21The mean number of agents in the components are slightly different than n1 and n2 : 19.20 and 44.25.22The median maximal geographic distance for all components of size around 50 is S = 640 kilometers. Thismeans that half of the population belong to a component whose maximal geographical distance found among allpairs agents in this component is less than 640 kilometers.15



44.63 when S < S and 43.79 when S > S.Finally, as regards theoretical networks, since all agents belong to a single connected com-ponent (if δ is not too close to 0), we simply compute emergent networks whose size correspondsto the one of the selected empirical component (n1 = 20, n2 = 50). The two geographical sizes(S1 = 1 and S2 = 2) and the two standard deviations σ1 and σ2 of agents’ heterogeneity (stillwith σ2 > σ1) proposed in the previous section are also retained. Again, for the ease of the expo-sure, we only examine the following combinations of the parameters : (n1, S1, σ1), (n2, S1, σ1)and (n2, S2, σ2). Lastly, we restrict our attention to the emergent networks obtained with valuesof delta for which we have seen that the emergent networks exhibit the small world properties(δ ∈ [0.2; 0; 35]), whatever the other parameters of the model. After an iterative process, itappears that when δ = 0.25, one gets the best fit between the empirical and the theoreticalnetworks for our various measures. Consequently, only the results obtained with this value ofdelta are presented.4.3 ResultsThe indexes proposed in the preceding section can be quite easily modified to characterizecomponents. Table 3 exposes some basic network computations performed for both theoreticaland empirical networks. There are two main manners to read these results. One may first comparedirectly numerical values computed on the two types of networks while the second consists,more interestingly, in comparing the effects of the parameters (S, n) on each of them. The firstapproach essentially aims to verify that the two types of networks exhibit comparable structureswhile the second aims to check whether the expected effects of external factors on the strategicformation of networks are corroborated by the data.As regards the former approach, we find that the average degree of theoretical and empiricalnetworks are quite close when n = 20 while theoretical networks are denser when n = 50.The average distances are also very similar when n = 20 while agents are in average closer theone to the others in theoretical networks when n = 50. This difference can be explained as astraightforward consequence of a lower density of empirical networks. The Gini coefficient of thedegree distributions are again comparable though degree inequality is always higher in empiricalnetworks. The difference is reduced when agents’ heterogeneity and geographical size are largesuggesting that agents heterogeneity is higher in real networks. Furthermore, though the averageclustering of empirical networks is always higher, theoretical and empirical networks are verysimilar in this respect.According to the second approach, we find that when n increases, the average degree ofempirical and theoretical networks also increases. There is no clear impact of n on the inequalityof the degree distribution in the theory and in the empirics. Population size affects negativelythe geodesic distance of theoretical networks because it increases the density of agents on a givengeographical space and thus reduces link formation costs. Such a phenomenon is not observedin the empirical networks since n impacts positively the geodesic distance of real networks. Thiscould be explained by a less homogeneous geographical space in the empirics or by the effect of16



unobserved exogenous factors (institutional or cognitive) eventually correlated with geography.For instance, if agents were located in geographical clusters on the ring, then increasing n wouldincrease geodesic distance as soon as agents do not find more incentives to form distant (betweenclusters) connections. This seems to indicate that, when the population is larger, theoreticalnetworks are even more small worlds à la Watts and Strogatz than empirical nets.Turning to the impacts of the geographical dimension S, it seems to have a very similar in-fluence on both theoretical and empirical networks. When S increases (n held constant) then theaverage degree is significantly reduced in both theoretical and empirical networks. This confirmsthat geographical distance plays positively on links formation costs. An expected mechanicalconsequence of a significant reduction of average degree resides in an increase of the averagegeodesic distance. Nevertheless, no significant change of average geodesic distance is observed inboth the theory and in the empirics. Even more, it slightly decreases in empirical networks. Wealso observe that clustering increases in both cases. When S increases, there are less numerousdistant connections because these connections have a much lower chance to be payoffs increa-sing given that costs are then higher. As geography increases, agents then tend to collaborateproportionally even more with their nearest geographic neighbors and even less with agents lo-cated far away. Finally, we observe that the Gini of the degree distribution increases : there aremore central agents when the geographical space is greater. This explains why, despite a muchlower connectivity, the average distance of emergent and empirical networks remains somehowconstant : more central agents play a very important role in reducing the distance between theirnumerous neighbors.Within-components degree asymmetryWe now turn to a deeper analysis of the within-components asymmetry in agents’ neighbo-rhoods size in a component. For that purpose, we define ρC(k), the relative within componentC degree distribution, as follows :ρC(k/ (#C − 1)) = 1#C∑i∈C 1 {ηi(g) = k} , (9)for all k = 0, ..., (#C − 1) with #C the number of agents in component C. Such a measureallows us to directly compare the degree distribution of components that may not have exactlythe same population size while inequality might to some extent be influenced by the size of thecomponent (rather than the opposite) : within a component of size n, one can not be linkedwith more than n− 1 other agents.The results are to be found in Figure 4 which plots simple histograms of averaged ρC dis-tributions computed on empirical components and theoretical networks for the different popu-lation size and geography as defined above. We find that the degree distribution of empiricalcomponents is right-asymmetric, even when the population remains limited around 20 agents.The theoretical networks also exhibit a right-asymmetric degree distribution, though inequalityis higher in empirical distributions. Let’s notice that, in the theoretical networks, the right-asymmetry of the distribution is an emergent property of the decentralized process of network17



formation since the distribution of agents-specific costs is uniform. Nevertheless, it is found thatthere are larger star agents in the empirics as compared to the theory when the populationis small (n1). This difference might be explained by more heterogeneity even when populationsize is still small. Moreover, it appears that increasing S generates larger (global) stars in thetheory whereas it generates more intermediary (local) stars in the empirics. This might againbe explained by a difference in the distribution of agents in space between the model and thedata. If agents are already clustered in space, increasing the geographical dimension stimulatesmore the emergence of local stars rather than the emergence of more global stars.How do networks relate to geography ?We are also interested in the way in which network links are distributed in space. In orderto provide a systematic analysis of the within-components correlation of social connections withgeography, we propose to study φC(·), the density distribution of direct connections accordingto the geographic distance between two linked agents corrected by the maximal distance (S)between any two agents of the component C. It is formally given by :φC (h/S) = 1# {ij |ij ∈ g st i, j ∈ C }∑ij∈g st i,j∈C 1 {sij = h} , (10)for all h = 1, ..., S.23How do the network links relate to the geographical space in theory and empirics ? Theaveraged φC distributions computed on empirical and theoretical components for the differentparameters as defined above are presented in Figure 5.As regards the empirics, we find that agents preferentially form links with other agentslocated in their geographical neighborhood. A very strong asymmetry is preserved in the within-component approach though it is reduced as compared to the across components distribution(Figure 3). Indeed, 54% (80%) of the connections formed between agents within componentsof population size around 20 (50) are at a geographical distance that is less than 10% of themaximal distance between any two agents of the component. In the meantime 20% (12%) ofthe connections formed between agents within components of population size around 20 (50)are of a geographical distance greater than 50% of the maximal distance. When n increases,there are proportionally less long distance connections. This corroborates our intuition on theeffect of n on the average geodesic distance (cf. Table 3) provided above : when n increases,the average geodesic distance increases in empirical networks because links are more frequentlyformed within clusters and distant connections are proportionally more scarce. Finally, S seemsto have no significant impact on the distribution.Theoretical networks do also share a strong asymmetry in the distribution. In all configu-rations of the parameters, the mode of the distribution is obtained for the lowest geographicdistance. However, such asymmetry does not reach the same extent as empirical networks. This23The components for which all agents do live in the same town are not included so that the relative distribu-tional measure keeps consistency. 18



difference may be explained by the absence, in the theoretical model, of any ex ante agglome-ration of agents in space, whereas in reality agents are located within territories.5. ConclusionIn this paper, we have introduced a model of network formation in which heterogeneousagents balance the benefits of forming links against their costs which increase with the geo-graphic distance over a ring on which agents are located at equidistant intervals. Networks arestrategically formed in a decentralized manner by rational but myopic agents through a dynamicmeeting process.We show that, for a large range of intermediary values of the decay parameter, the modelgenerates emergent networks that share the main structural properties of most real social net-works, namely the four properties usually associated with the denomination of small worlds (theexistence of a large connected component that links directly or indirectly most agents, a shortaverage path length, a high average clustering and a high inequality in degree distribution). Des-pite agents have disincentives to form triangles, clustering is achieved in the local space becauselocal connections are less costly. Networks connections also discorrelates with geography slightlythanks to some agents who find connection opportunities with distant partners. These agentsare likely to be the ones that have the greater abilities to sustain connections at low costs andwho also tend to play the role of local intermediaries.Moreover, we bring the model to network data concerning all inter-individual collaborationsbetween French inventors of all European patents over a 25 years period. A first global analysisof the whole French co-invention network is provided. Given its high level of disaggregation incomponents, we propose a within-components methodology to compare empirical networks withtheoretical networks. We find that theoretical and empirical networks present close structuralmeasures. More, most of the predictions on the impacts of several parameters effects on networksstructure are corroborated in the data. In particular, the dimension of the geographical spaceon which agents are located reduces the density of the network because this increases linksformation costs, and thus both the relational distance between agents and the propensity toform local connections (i.e. local clustering) increase.The theoretical model also generates networks whose degree distribution is highly right-asymmetric in a comparable extent as empirical networks. This property is a consequence of thedecentralized network formation process since agents are only assumed to be ex ante uniformlyheterogeneous in the link costs they bear. It is thus not necessary to assume that agents’ abilitiesare asymmetrically distributed to fit the data : It is the network formation process that tends toenhance inequalities as measured through agents’ degrees. Lastly, the theoretical model succeedsin generating networks, most connections of which are formed in the local environment while stilla few distant connections are formed, a property shared by the empirical co-invention networks.Among the limits of the model, we should notice that agents are obviously not locateduniformly in space but in clusters, a difference which is observed in the results. Nevertheless,19
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# isolated agents 21, 354# connected agents #N (g) 76, 612# links η (g) 134, 224# of components 12, 515Size of the largest component 33, 650Size of the 2nd largest component 143Average degree η̂(g) (over all agents) 2.74Average degree η̂(g) (over connected agents) 3.50Highest degree maxi∈N η (g) 202Average clustering c(g) 0.54Average geographic distance of direct connections⋄ 89.23 km⋄ Agents’ location is considered as declared in the patent which evidences each connection.This implies the multiple counting of links (possibly associated to different distances) whichconnect a mobile inventor who has invented several times with the same co-inventor.Table 1. Descriptive statistics on the co-invention network.
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Ĉ γ̂Agents degree distribution 0.50 1.73Link geographical distance distribution⋄,⋆ 0.39 1.51Component size distribution 0.46 1.66Table 2. Estimates of the parameters C and γ of the power law distribution on threeempirical distributions. A power law distribution is defined as follows : f (k) = Ck−γ , ∀k =1, ...,∞, such that ∑k=1,...,∞ Ck−γ = 1, with f(k) the frequency of observations having valuek. We used a maximum likelihood approach (introduced by Nicholls, 1986) which, as suggestedby Egghe and Rousseau (1990), performs much better than a least square approach.⋄ Agents’ location is considered as declared in the patent which evidences the connection.As a consequence, a connection between two persons is counted twice if at least one of the twodeclared a different address in the two patents they invented together.⋆ Since distance is per se a continuous variable, the estimated distance variable is the numberof tens of kilometers initiated= ⌈(# of kilometers)/10⌉.
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Empirics TheoryNo recent link formation δ = 0.2515 ≤ n ≤ 25 30 ≤ n ≤ 70 n1 = 20 n2 = 50all S S < S S ≥ S σ1, S1 σ1, S1 σ2, S2Average degree η̂(g) 3.74 8.11 4.18 3.78 10.71 5.67Average distance d(g) 2.51 3.22 3.14 2.43 2.02 2.25Average clustering c(g) 0.73 0.71 0.75 0.63 0.63 0.70Gini coefficient Gi(g) 0.31 0.33 0.37 0.22 0.16 0.33Total # of agents (1, 671) (504) (496) (10, 000) (10, 000) (10, 000)Table 3. Various structural measures computed on empirical and theoretical emergent net-works. S is the median geographical size of components of population 35 ≤ n ≤ 65.
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