

The Pace of Technology Transfer in Anticipation of Joint Venture Breakup.

Ngo Van LONG (McGill University)

Antoine SOUBEYRAN (Aix-Marseille, GREQAM)

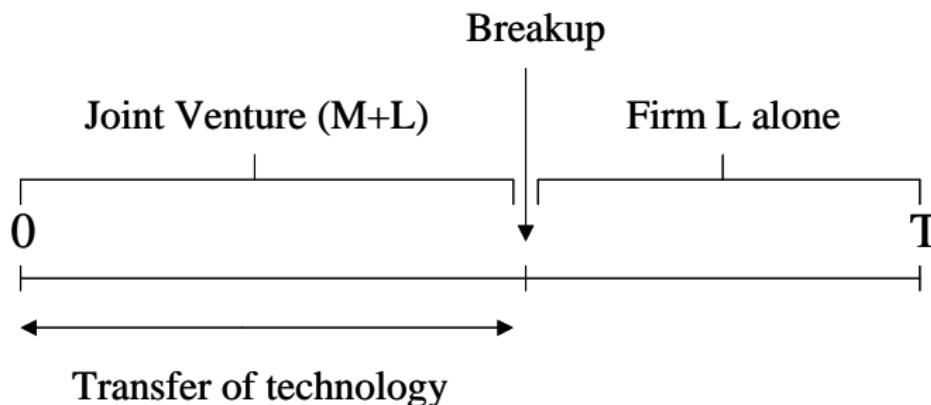
Raphael SOUBEYRAN (Montpellier, INRA-Moisa)

April 3, 2009

Stylized facts

- ▶ **One of the key engines of growth for emerging markets:**

Technology transfer from developed economies.


- ▶ **Major issue for Joint Ventures:**

JV breakup (often within a few years).

- ▶ **Absorptive capacity:**

Pace matters, the costs associated to technology transfer increase with the pace.

The Story

- ▶ M cannot prevent L from breaking away after receiving its technology transfer \Rightarrow *Enforcement of contracts is incomplete:*

Key elements of the model

- ▶ *Dynamic model* of principal (M) - agent (L) relationship (JV, labor contract...) with
 1. Pace of technology transfer.
 2. Evolution of profit sharing.
- ▶ Previous models: two periods; Ethier and Markusen (1996), Markusen (2001), Roy Chowdhury and Roy Chowdhury (2001).

Main result

- ▶ Credit Market failure + Property Rigths failure (dev. economy) \Rightarrow Second best contracts:

1. **Pace:** the pace and aggregate amount of technology transfer deviate from the first best.
 - ▶ Is the speed of technology transfer reduced?
 - ▶ Is the cumulative amount of technology transfer lower?
2. **Profit Sharing:** a flow of side payments from M to encourage L to stay longer.
 - ▶ Does the side payment increase over time?
 - ▶ What is the optimal time to let the local firm break away?

The Basic Model

Notations

- ▶ Time is a continuous variable, $t \in [0, T]$.
- ▶ $h(t)$: rate of technology transfer.
- ▶ $H(t) = \int_0^t h(\tau) d\tau$: state of technological knowledge of the local firm.
- ▶ $C(h(t))$: "absorption costs".
- ▶ $\pi(H(t))$: the (reduced-form) gross profit of a firm with knowledge $H(t)$.

Outline of the analysis:

1. Characterize the first best (efficient) time path of technology transfer.
2. Discuss whether this path can be achieved if L can break away and become a stand alone entity that captures all the post-breakaway profit.

The answer depends on what kind of contract is feasible:

- ▶ **Credit market failure?**

Can L borrow some money?

- ▶ **Property rights failure?**

Is compensation from L to M after the breakaway allowed?

(II) The first best solution

The first best solution 1/3:

- ▶ First best situation: L cannot break away/ Joint surplus maximization:

$$\underset{\{h(t), t \in [0, T]\}}{\text{Max}} \left[V = \int_0^T [\pi(H(t)) - C(h(t))] dt \right]$$

s.t. $\dot{H}(t) = h(t)$, $H(0) = H_0 = 0$ and $0 \leq h \leq h_{\max}$.

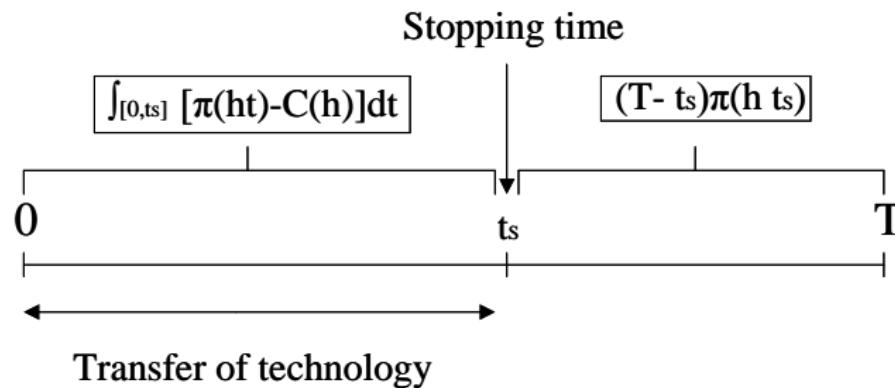
- We consider*:

$$h(t) = \begin{cases} h & \text{if } t \in [0, t_S] \\ 0 & \text{if } t \in (t_S, T] \end{cases} \quad (1)$$

- t_S : “technology-transfer-stopping time”.
- New maximization programme:

$$\underset{h, t_S}{\text{Max}} \left[V(h, t_S) = \int_0^{t_S} [\pi(ht) - C(h)] dt + [T - t_S] \pi(ht_S) \right] \quad (2)$$

s.t. $0 \leq h \leq h_{\max}$ and $0 \leq t_S \leq T$.


The first best solution 2/4:

Two phases:

1. Investment in technology:

$$V - R = \int_0^{t_S} [\pi(ht) - C(h)] dt$$

2. Exploitation of knowledge: $R = [T - t_S] \pi(ht_S)$

The first best solution:

Proposition 1: *The solution of the (first-best) optimization problem (2) of the joint venture exists, is unique, and has the following properties:*

- (i) $0 < h^* < h_{\max}$ for t in $[0, t_S^*]$.
- (ii) $0 < t_S^* < T$.
- (iii)

$$C'(h^*) - \frac{C(h^*)}{h^*} = \frac{1}{t_S^*} \int_0^{t_S^*} \left[\frac{\partial}{\partial h} \pi(h^* t) \right] dt$$

- (iv)

$$(T - t_S^*) \pi'(h^* t_S^*) = \frac{C(h^*)}{h^*}.$$

(III) Joint venture contracts and breakaway

Payoffs with side payments

- ▶ t_B : Breakaway time chosen by L .
- ▶ $w(t)$: flow of payment from M to L before the breakaway (wage).
- ▶ $\phi(t)$: flow of compensation payment from L to M after the breakaway (royalties).

- ▶ L has an incentive to break away before t_S : $t_B \leq t_S$.
- ▶ The total payoffs of M and L :

$$V_M \equiv \int_0^{t_B} [\pi(H(t)) - C(h(t)) - w(t)] dt + \int_{t_B}^T \phi(t) dt,$$

and

$$V_L \equiv \int_0^{t_B} w(t) dt + \int_{t_B}^T [\pi(H(t)) - \phi(t)] dt.$$

Market failures

Credit market failure (C1): L cannot borrow any money

$$0 \leq \int_0^t w(\tau) d\tau \text{ for all } t \in [0, t_B].$$

Property rights failure (C2): M cannot get any compensation payments from the local firm after t_B

$$\phi(t) = 0 \text{ for all } t \in [t_B, T],$$

Technology transfer with two market imperfections

$$\max_{h, t_S, w(\cdot)} V_M = \int_0^{t_B} [\pi(H(t)) - C(h(t)) - w(t)] dt$$

$$t_B = \arg \max_t \left[V_L = \int_0^t w(\tau) d\tau + (T - t)\pi(H(t)) \right] \text{ (IC)}$$

$$0 \leq \int_0^t w(\tau) d\tau \text{ if } t \in [0, t_B] \text{ (BC)}$$

Where $H(t) = \int_0^t h(\tau) d\tau$ and

$$h(t) = \begin{cases} h & \text{if } t \in [0, \min(t_S, t_B)] \\ 0 & \text{if } t \in (\min(t_S, t_B), T] \end{cases}$$

The local firm's secure payoff

What can L secure in the "worst" case ($w(\cdot) \equiv 0$) ?

- ▶ M firm takes 100% of the profit of the JV ($w(\cdot) \equiv 0$).
- ▶ Given (h, t_S) , L will choose \hat{t}_B in $[0, t_S]$, to maximize

$$R(h, t_B) \equiv (T - t_B)\pi(ht_B) \text{ where } t_B \in [0, t_S]$$

Example 1

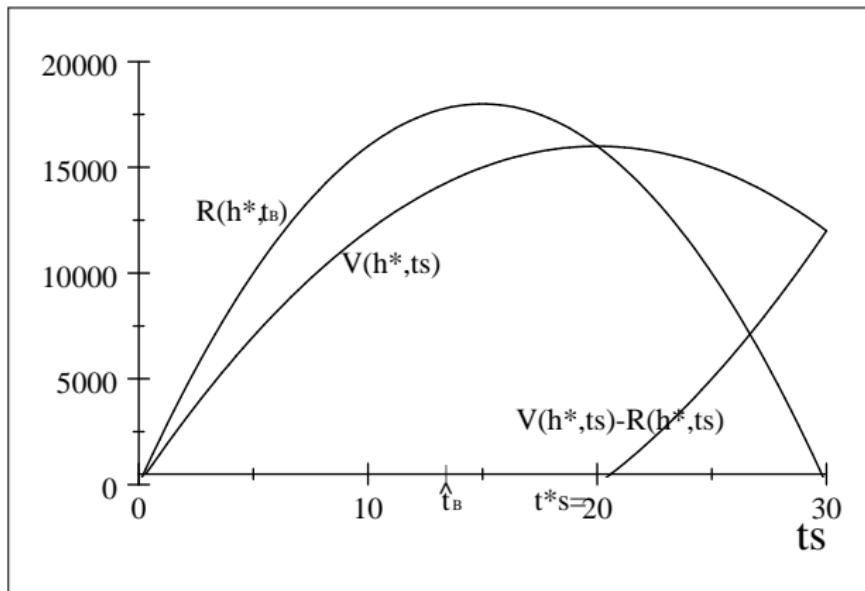


Fig. 1: Case where the local firm breaks away before the first best transfer-stopping time.

Example 2

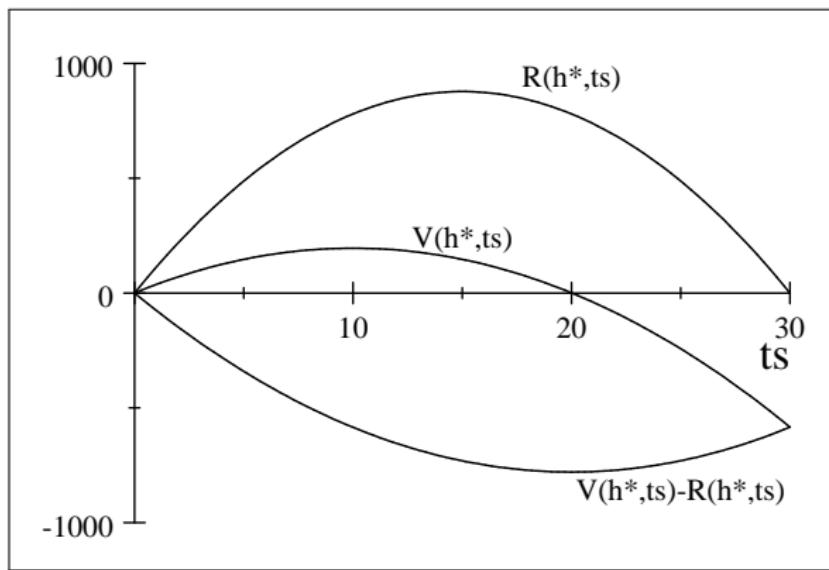


Fig. 2: Case where the local firm breaks away at the first best transfer-stopping time ($\hat{t}_B(h^*) = t_S^* = 10$).

Incentive compatible contracts with credit constraint

- ▶ The local firm can secure

$$\underline{V}_L(h) = (T - \hat{t}_B(h))\pi(h\hat{t}_B(h)).$$
- ▶ Given $(h, w^C(\cdot))$, the breakaway time is t_B^C .

For h given, the multinational firm chooses an optimal flow of side payments, $w^C(\cdot)$:

$$\int_0^{\hat{t}_B(h)} w^C(t) dt = 0 \text{ and}$$

$$\int_{\hat{t}_B(h)}^{t_B^C} w^C(t) dt + (T - t_B^C)\pi(h t_B^C) = \underline{V}_L(h)$$

Reformulation of M's programme

$$\max_{h, t_B^C, w^C(\cdot)} V_M = \int_0^{t_B^C} [\pi(H(t)) - C(h(t)) - w^C(t)] dt$$

$$\int_0^{t_B^C} w^C(t) dt + (T - t_B^C) \pi(ht_B^C) = V_L(h) \text{ (IC)}$$

$$\int_0^{\hat{t}_B(h)} w^C(t) dt = 0 \text{ (BC)}$$

Where $H(t) = \int_0^t h(\tau) d\tau$ and $h(t) = \begin{cases} h & \text{if } t \in [0, t_B^C] \\ 0 & \text{if } t \in (t_B^C, T] \end{cases}$

- ▶ Has M an incentive to reduce the pace of technology transfer?

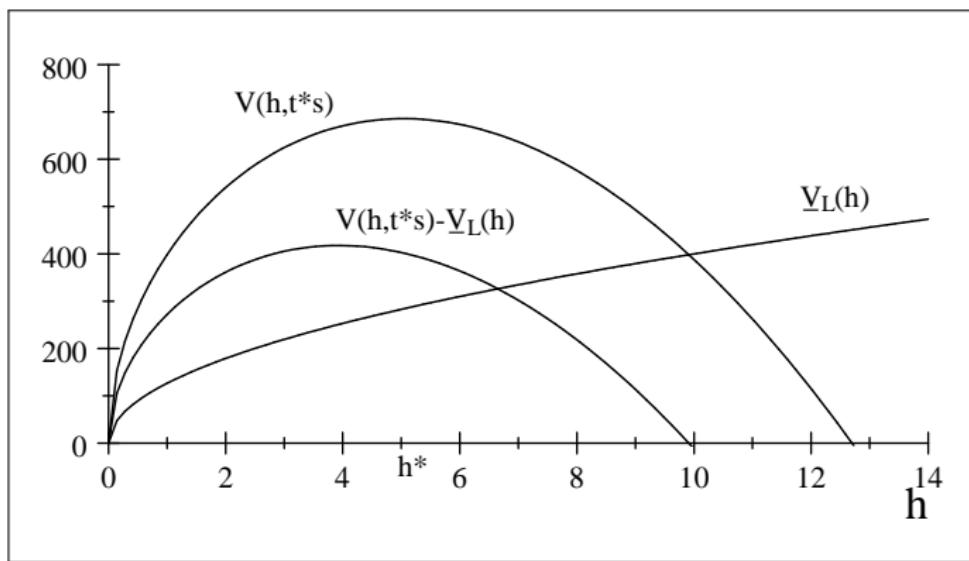


Fig. 3: The secure value of the local firm and the pace of technology transfer.

Comparison with the first best

- ▶ The (second best) optimal pace and the optimal breakaway time (h^C, t_B^C) are such that:

$$h^C < h^* \text{ and } t_B^C > t_S^*$$

- ▶ The (second best) amount of technology transferred H^C is lower than the first best one H^* .
- ▶ The flow of side payment increases through time,
$$\frac{dw^C}{dt} \geq 0.$$

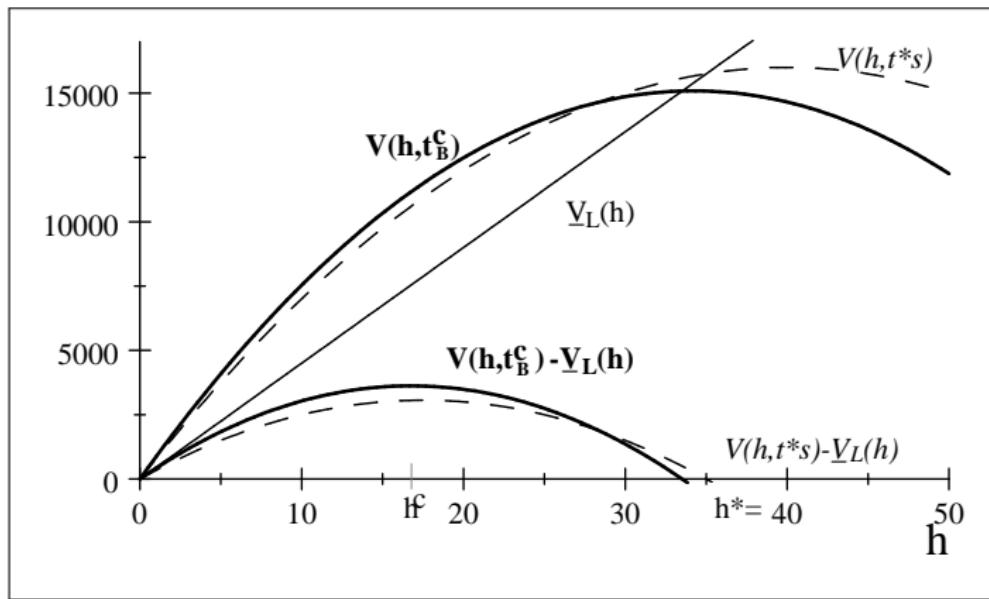


Fig. 3: The secure value of L and the pace of technology transfer.

Intuition

The intuition behind our results:

- ▶ M knows that L will always want to breakaway at some stage.
- ▶ Given (h, t_S) , L will breakaway at $\hat{t}_B(h) \leq t_S$, earning a "secure payoff" $\underline{V}_L(h)$.
- ▶ M reduces h to counter L 's opportunistic behavior.
- ▶ The positive flow of side payments written in the contract $(w^*(.))$ is a bribe to induce L to stay longer in the JV.

THANKS !

Implications of tariff policies, wages policies and spillover effects

Tariff policies, wages policies

- ▶ An increase in the tariff rate will raise the profit of the joint venture which leads to an increase in both h^* and H^* .
- ▶ The second best amount of transfer also increases, because K increases.
- ▶ Similarly, a smaller wage rate will lead to more technology transfer.

Trade-off between the static efficiency loss of a tariff and the dynamic gain generated by technology transfer (and its spillover effects).

Local spillover effects

- ▶ An increase in the strength of spillover effects will reduce the profit of the JV which leads to a decrease in both h^* and H^* .
- ▶ The second best amount of technology transfer also decreases.

Supplementary informations

The Costs of technology transfer

According to Teece (1977) there are four technology transfer costs:

1. Costs associated to pre-engineering technological exchanges.
2. Costs of transferring and absorption of the process or the product design.
3. R&D costs "associated with solving unexpected problems and adapting or modifying technology".
4. Training costs (extra supervisory personnel).